
ITERATORS AND GENERATORS 10
COMPUTER SCIENCE 61A

July 23, 2015

1 Iterators

An iterator is an object that tracks the position in a sequence of values. It can return an
element at a time, and it is only good for one pass through the sequence. The following is
an example of a class that implements Python’s iterator interface. This iterator calculates
all of the natural numbers one-by-one, starting from zero:
class Naturals():

def __init__(self):
self.current = 0

def __next__(self):
result = self.current
self.current += 1
return result

def __iter__(self):
return self

An iterator is an object that has a __next__ and an __iter__ method.

1.1 __next__

The __next__ method checks if it has any values left in the sequence; if it does, it com-
putes the next element. To return the next value in the sequence, the __next__ method
keeps track of its current position in the sequence. If there are no more values left to
compute, it must raise an exception called StopIteration. This signals the end of the
sequence.

Note: the __next__method defined in the Naturals class does not raise StopIteration
because there is no “last natural number”.

1



DISCUSSION 10: ITERATORS AND GENERATORS Page 2
1.2 __iter__

The __iter__ method returns an iterator object. If a class implements both a __next__
method and an __iter__ method, its __iter__ method can simply return self as

the class itself is an iterator. In fact, the Python docs require that all iterators’ __iter__
methods must return self.

1.3 Implementation

When defining an iterator, you should always keep track of current position in the se-
quence. In the Naturals class, we use self.current to save the position.

Iterator objects maintain state. Each successive call to __next__ will return the next
element, which may be different, so __next__ is considered non-pure.

Python has built-in functions called next and iter that call __next__ and __iter__
respectively.

For example, this is how we could use the Naturals iterator:
>>> nats = Naturals()
>>> next(nats)
0
>>> next(nats)
1
>>> next(nats)
2

1.4 Questions

1. Define an iterator whose ith element is the result of combining the ith elements of two
input iterators using some binary operator, also given as input. The resulting iterator
should have a size equal to the size of the shorter of its two input iterators.
>>> from operator import add
>>> evens = IteratorCombiner(Naturals(), Naturals(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 3
class IteratorCombiner(object):

def __init__(self, iterator1, iterator2, combiner):

def __next__(self):

def __iter__(self):

2. What is the result of executing this sequence of commands?
>>> nats = Naturals()
>>> doubled_nats = IteratorCombiner(nats, nats, add)
>>> next(doubled_nats)

>>> next(doubled_nats)

1.5 Extra Question

1. Create an iterator that generates the sequence of Fibonacci numbers.
class FibIterator(object):

def __init__(self):

def __next__(self):

def __iter__(self):
return self

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 4

2 Iterables

An iterable object represents a sequence. Examples of iterables are lists, tuples, strings,
and dictionaries. The iterable class must implement an __iter__method, which returns
an iterator. Note that since all iterators have an __iter__ method, they are all iterable.

In general, a sequence’s __iter__ method will return a new iterator every time it is
called. This is because an iterator cannot be reset. Returning a new iterator allows us to
iterate through the same sequence multiple times.

In the following example, we’ve defined a simple iterable Range class, which represents
the integers from 0 to stop.

class Range:
def __init__(self, stop):

self.stop = stop

def __iter__(self):
return RangeIterator(self.stop)

class RangeIterator:
def __init__(self, stop):

self.current = 0
self.stop = stop

def __iter__(self):
return self

def __next__(self):
curr = self.current
if curr >= self.stop:

raise StopIteration
self.current += 1
return curr

Iterables can be used in for loops and as arguments to functions that require a sequence
(e.g. map and zip). For example:
>>> for n in Range(2):
... print(n)
...
0
1

This works because the for loop implicitly creates an iterator using the __iter__method.
Python then repeatedly calls next repeatedly on the iterator, until it raises StopIteration
. In other words, the loop above is (basically) equivalent to:

range_iterator = iter(Range(2))
is_done = False
while not is_done:

try:
val = next(range_iterator)
print(val)

except StopIteration:
is_done = True

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 5
2.1 Questions

1. What would Python display in an interactive session?
>>> range3 = Range(3)
>>> for i in range3:
... print(i)
...

>>> list(range3)

>>> iterator3 = iter(range3)
>>> list(iterator3)

>>> list(iterator3)

2. To make the Link class iterable, implement the LinkIterator class.
class Link:

empty = ()
def __init__(self, first, rest=empty):

self.first = first
self.rest = rest

def __iter__(self):
return LinkIterator(self)

class LinkIterator:
def __init__(self, link):

def __iter__(self):

def __next__(self):

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 6

3 Generators

A generator function is a special kind of Python function that uses a yield statement
instead of a return statement to report values. When a generator function is called, it returns
an iterable object.

The following is a function that returns an iterator for the natural numbers:
def generate_naturals():

current = 0
while True:

yield current
current += 1

Calling generate_naturals() will return a generator object, which you can use to
retrieve values.
>>> gen = generate_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

Think of a generator object as containing an implicit __next__ method. This means, by
definition, a generator object is an iterator.

3.1 yield

The yield statement is similar to a return statement. However, while a return state-
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time __next__ is called, which allows the generator to auto-
matically keep track of the iteration state.

Once __next__ is called again, execution resumes where it last stopped and continues
until the next yield statement or the end of the function. A generator function can have
multiple yield statements.

Including a yield statement in a function automatically tells Python that this function
will create a generator. When we call the function, it returns a generator object instead
of executing the the body. When the generator’s __next__ method is called, the body is
executed until the first yield statement.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 7
3.2 Implementation

Because generators are technically iterators, you can implement __iter__ methods us-
ing them. For example:
class Naturals():

def __init__(self):
self.current = 0

def __iter__(self):
while True:

yield self.current
self.current += 1

Naturals’s __iter__method now returns a generator object. The behavior of Naturals
is exactly the same as before:
>>> nats = Naturals()
>>> nats_iterator = iter(nats)
>>> next(nats_iterator)
0
>>> next(nats_iterator)
1

There are a couple of things to note:

• No __next__ method in Naturals. __iter__ only needs to return an iterator, and
a generator is an iterator

• nats is a Naturals object and nats_iterator is a generator

• Generator objects are iterators, so they can be used in for loops

3.3 Questions

1. Define a generator that yields the sequence of perfect squares. The sequence of perfect
squares looks like: 1, 4, 9, 16 . . .
def perfect_squares():

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 10: ITERATORS AND GENERATORS Page 8
2. To make the Link class iterable, implement the __iter__ method using a generator.
class Link:

empty = ()

def __init__(self, first, rest=empty):
self.first = first
self.rest = rest

def __iter__(self):

3.4 Extra Questions

1. Write a generator function that returns all subsets of the positive integers from 1 to n.
Each call to this generator’s __next__ method will return a list of subsets of the set
[1, 2, ..., n], where n is the number of times __next__ was previously called.
def generate_subsets():

"""
>>> subsets = generate_subsets()
>>> for _ in range(3):
... print(next(subsets))
...
[[]]
[[], [1]]
[[], [1], [2], [1, 2]]
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng


