
RECURSION: n. SEE RECURSION 3
COMPUTER SCIENCE 61A

June 30, 2015

1 Recursion

A recursive function is a function that calls itself. Below is a recursive factorial func-
tion.
def factorial(n):

if n == 0 or n == 1:
return 1

else:
return n * factorial(n-1)

Although we haven’t finished defining factorial, we are still able to call it since the
function body is not evaluated until the function is called. We do have one base case:
when n is 0 or 1. Now we can compute factorial(2) in terms of factorial(1),
and factorial(3) in terms of factorial(2), and factorial(4) – well, you get
the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: What is the simplest argument we could possibly get? For
example, factorial(0) is 1 by definition.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume that
a recursive call for this new problem will simply work. This is called the “leap of
faith”. For factorial, we reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember that we are assuming your
recursive call works. With the result of the recursive call, how can you solve the
original problem you were asked? For factorial, we just multiply (n− 1)! by n.

1



DISCUSSION 3: RECURSION: n. SEE RECURSION Page 2
1.1 Cool recursion questions!

1. Print out a countdown using recursion.
def countdown(n):

"""
>>> countdown(3)
3
2
1
"""

First, think about a base case. What is the simplest input the problem could be given?

After you’ve thought of a base case, think about a recursive call with a smaller argu-
ment that approches the base case. What happens if you call countdown(n - 1)?

Then, put the base case and the recursive call together, and think about where a print
statement would be needed.

2. Is there an easy way to change countdown to count up instead?

3. Write a function recursive mul(m, n) that multiplies two numbers m and n. As-
sume m and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for recursive mul?

For the recursive case, what does calling multiply(m - 1, n) do? What does
calling multiply(m, n - 1) do? Which one do we want to use?

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 3: RECURSION: n. SEE RECURSION Page 3
def multiply(m, n):

"""
>>> multiply(5, 3)
15
"""

4. Write a procedure expt(base, power), which implements the exponent function.
For example, expt(3, 2) returns 9, and expt(2, 3) returns 8. Assume power is
always a non-negative integer. Use recursion, not pow!
def expt(base, power):

5. Write a recursive function that sums the digits of a number n. Assume n is positive.
You might find the operators // and % useful.
def sum_digits(n):

"""
>>> sum_digits(7)
7
>>> sum_digits(30)
3
>>> sum_digits(228)
12
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 3: RECURSION: n. SEE RECURSION Page 4
6. Below is the iterative version of is prime, which returns True if positive integer n

is a prime number and False otherwise:
def is_prime(n):

if n == 1:
return False

k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Implement the recursive is prime function. Do not use a while loop, use recursion.
def is_prime(n):

7. Write sum primes up to(n), which sums up every prime up to and including n.
Assume you have an is prime(n) predicate.
def sum_primes_up_to(n):

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 3: RECURSION: n. SEE RECURSION Page 5
1.2 Recursive Environment Diagram!

1. Draw an environment diagram for the following code:
def rec(x, y):

if y > 0:
return x * rec(x, y - 1)

return 1
rec(3, 2)

Bonus question: what does this function do?

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 3: RECURSION: n. SEE RECURSION Page 6

2 Iteration vs. Recursion

We’ve written factorial recursively. Let’s compare the iterative and recursive versions:
def factorial_recursive(n):

if n == 0 or n == 1:
return 1

else:
return n * factorial_recursive(n-1)

def factorial_iterative(n):
total = 1
while n > 1:

total = total * n
n = n - 1

return total

Notice, while the recursive function “works” until n is less than or equal to 0, the iterative
function “works” while n is greater than 0. They’re essentially the same.

Let’s also compare fibonacci.
def fib_recursive(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib_recursive(n - 1) + fib_recursive(n - 2)

def fib_iterative(n):
current, next = 0, 1
while n > 0:

current, next = next, current + next
n = n - 1

return current

For the recursive version, we copied the definition of the Fibonacci sequence straight into
code! The nth fibonacci number is simply the sum of the two before it. Iteratively, you
need to keep track of more numbers and have a better understanding of the code.

Some code is easier to write iteratively and some recursively. Have fun experimenting
with both!

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng


