
HIGHER ORDER FUNCTIONS AND ENVIRONMENT

DIAGRAMS 2
COMPUTER SCIENCE 61A

June 25, 2015

1 Higher Order Functions

A higher order function (HOF) is a function that manipulates other functions by taking
in functions as arguments, returning a function, or both.

1.1 Functions as Arguments

One way a higher order function can exploit other functions is by taking functions as
input. Consider this higher order function called negate.
def negate(f, x):

return -f(x)

negate takes in a function f and a number x. It doesn’t care what exactly f does, as long
as f takes in a number and returns a number. Its job is simple: call f on x and return the
negation of that value.

1.2 Questions

1. Here are some possible functions that can be passed through as f.
def square(n):

return n * n

def double(n):
return 2 * n

What will the following Python statements output?

1



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 2
>>> negate(square, 5)

>>> negate(double, -19)

>>> negate(double, negate(square, -4))

2. Implement a function keep ints, which takes in a function cond and a number n,
and only prints a number from 1 to n if calling cond on that number returns True:
def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(is_even, 5)
2
4
"""

1.3 Functions as Return Values

Often, we will need to write a function that returns another function. One way to do this
is to define a function inside of a function:
def outer(x):

def inner(y):
...

return inner

The return value of outer is the function inner. This is a case of a function returning
a function. In this example, inner is defined inside of outer. Although this is a com-
mon pattern, we can also define inner outside of outer and still use the same return
statement.
def inner(y):

...
def outer(x):

return inner

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 3
1.4 Questions

1. Use this definition of outer to fill in what Python would print when the following
lines are evaluated.
def outer(n):

def inner(m):
return n - m

return inner
>>> outer(61)

>>> f = outer(10)
>>> f(4)

>>> outer(5)(4)

2. Implement a function keep ints like before, but now it takes in a number n and
returns a function that has one parameter cond. The returned function prints out all
numbers from 1..i..n where calling cond(i) returns True.
def keep_ints(n):

"""Returns a function which takes one parameter cond and
prints out all integers 1..i..n where calling cond(i)
returns True.

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(5)(is_even)
2
4
"""

2 Lambda Functions

Lambda expressions are one-line functions that specify two things: the parameters and
the return expression.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 4
A lambda expression that takes in no arguments and returns 8:

lambda: 8︸︷︷︸
return value

A lambda expression that takes two arguments and returns their product:

lambda x, y︸ ︷︷ ︸
parameters

: x * y︸ ︷︷ ︸
return expression

Unlike functions created by a def statement, the function object that a lambda expression
creates has no intrinsic name and is not bound to any variable. In fact, nothing changes in
the current environment when we evaluate a lambda expression unless we do something
with this expression, such as assign it to a variable or pass it as an argument to a higher
order function.

2.1 Questions

1. What would Python print?
>>> a = lambda: 5
>>> a()

>>> a(5)

>>> b = lambda: lambda x: 3
>>> b()(15)

>>> c = lambda x, y: x + y
>>> c(4, 5)

>>> d = lambda x: lambda y: x * y
>>> d(3)

>>> d(3)(3)

>>> e = d(2)
>>> e(5)

>>> f = lambda: print(1)

>>> g = f()

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 5
2. Fill in the blanks with one-line lambda expressions so that each call expression that

follows returns 3.
>>> f1 = ________________
>>> f1()
3

>>> f2 = ________________
>>> f2()()
3

>>> f3 = ________________
>>> f3()(3)
3

>>> f4 = ________________
>>> f4()()(3)()
3

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 6

3 Environment Diagrams

Recall that an environment diagram keeps track of all the variables that have been de-
fined and the values they are bound to. However, values are not necessarily only inte-
gers and strings. Environment diagrams can model more complex programs that utilize
higher order functions.

def add_num(x):
return lambda y: x + y

add_two = add_num(2)
add_two(3)

Lambdas are represented similiarly to functions in environment diagrams, but since they
lack an instrinsic name, the lambda symbol (λ) is used instead.

The parent of a function, including lambdas, is always the frame in which the function
is defined. It is useful to include the parent in environment diagrams in order to find
variables that are not defined in the current frame. In the previous example, when we
call add two (which is really the lambda function), we need to know what x is in order
to compute x + y. Since x is not in the frame f2, we look at the frame’s parent, which is
f1. There, we find x is bound to 2.

As illustrated above, higher order functions that return a function are represented with a
pointer to the function object.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 7
3.1 Questions

1. Draw the environment diagram that results from executing the code below.
from operator import add

six = 1

def ty(one, a):
spring = one(a, six)
return spring

six = ty(add, 6)
spring = ty(add, 6)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 8
2. Draw the environment diagram for the following code:
from operator import add
def curry2(h):

def f(x):
def g(y):

return h(x, y)
return g

return f

make_adder = curry2(add)
add_three = make_adder(3)
five = add_three(2)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 2: HIGHER ORDER FUNCTIONS AND ENVIRONMENT DIAGRAMS Page 9
3.2 Extra Questions

1. Draw the environment diagram for the following code: (Note that using the + op-
erator with two strings results in the second string being appended to the first. For
example "C" + "S" concatenates the two strings into one string "CS")
y = "y"
h = y
def y(y):

h = "h"
if y == h:

return y + "i"
y = lambda y: y(h)
return lambda h: y(h)

y = y(y)(y)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng


