
Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for linked lists.
• A (linked) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Dots can be used in a quoted list to specify the second
element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)
 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.
Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for name
lookup

The structure
of the Scheme
interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 1

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.
A tail call is a call expression in a tail context, which are:
• The last body expression in a lambda expression
• Expressions 2 & 3 (consequent & alternative) in a tail context

if expression
(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

(define (length s)
 (if (null? s) 0
 (+ 1 (length (cdr s)))))

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))))
 (length-iter s 0))

Recursive call is a tail call

Not a tail call

Creates a new
environment each

time a user-
defined procedure

is applied

A basic interpreter has two parts: a parser and an evaluator.

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)

class Pair:
 """A Pair has first and second attributes.

 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

(* 3  
 (+ 4 5) 
 (* 6 7 8))

Scheme expression

*

3 +

4 5

*

6 87

Expression Tree

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as Pairs

CS 61A Final Exam Study Guide – Page 2

(define (map-stream fn s)
 (if (null? s)
 nil
 (cons-stream (fn (car s))
 (map-list fn (stream-cdr s)))))

A stream is a Scheme list (linked
list), but the rest of the list
is computed on demand.

The rest of a stream is a promise.
When you force a promise, you
force evaluation of the expression

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).
Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

select "abraham" as parent, "barack" as child union
select "abraham" , "clinton" union
select "delano" , "herbert" union
select "fillmore" , "abraham" union
select "fillmore" , "delano" union
select "fillmore" , "grover" union
select "eisenhower" , "fillmore";

create table parents as

select [expression] as [name], [expression] as [name], ... ;

select [columns] ; from [table] where [condition] order by [order]

create table dogs as
 select "abraham" as name, "long" as fur union
 select "barack" , "short" union
 select "clinton" , "long" union
 select "delano" , "long" union
 select "eisenhower" , "short" union
 select "fillmore" , "curly" union
 select "grover" , "short" union
 select "herbert" , "curly";

E

F

A D G

B C H

select a.child as first, b.child as second
 from parents as a, parents as b
 where a.parent = b.parent and a.child < b.child;

First Second
barack clinton

abraham delano
abraham grover
delano grover

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows A column has a name and a type

A row has a value for each column

scm> (define s (cons-stream 1 (cons-stream 2 nil)))
s
scm> s
(1 . #[promise (not forced)])
scm> (car s)
1
scm> (cdr s)
#[promise (not forced)]
scm> (stream-cdr s)
(2 . #[promise (not forced)])
scm> s
(1 . #[promise (forced)])

You can explicitly create
promises by using the delay
special form. To force a

scm> (define x (/ 1 0))
ZeroDivisionError
scm> (define y (delay (/ 1 0)))
y
scm> y
#[promise (not forced)]
scm> (force y)
ZeroDivisionError

(define (integers first)
 (cons-stream first
 (integers (+ first 1))))

Promise (not
forced)

1

Promise
(forced)

1 2

Promise (not
forced)

Promise
(forced)

1 2

Promise
(forced)

Infinite stream of integers
starting at first

select weight/legs, count(*)
 from animals
 group by weight/legs having count(*)>1;

weight/legs count(*)

5 2

2 2

kind legs weight
dog 4 20
cat 4 10

ferret 4 10
parrot 2 6

penguin 2 10
t-rex 2 12000

weight/legs = 5
weight/legs = 2
weight/legs = 2
weight/legs = 3
weight/legs = 5
weight/legs = 6000

A simple fact in Logic declares a relation to be true.

logic> (fact (father vader luke))
logic> (fact (father vader leia))

You can make queries in Logic:

logic> (query (parent vader luke))
Success!
logic> (query (parent luke vader))
Failed.
logic> (query (parent ?who luke))
Success!
who: vader
logic> (query (parent vader ?who))
who: luke
who: leia

A compound fact consists of a conclusion and one or more
hypotheses.

(fact (grandparent ?x ?y)
 (parent ?x ?z)
 (parent ?z ?y))

?x is a grandparent of ?y if
•?x is the parent of some ?z, AND
•?z is the parent of ?y

A recursive fact is a compound fact where one or more of the
hypotheses are recursive.

(fact (ancestor ?x ?y)
 (parent ?x ?z)
 (ancestor ?z ?y))

?x is an ancestor of ?y if
•?x is the parent of some ?z
•?z is an ancestor of ?y

(fact (in ?elem (?elem . ?rest)))
(fact (in ?elem (?first . ?rest))
 (in ?elem ?rest))

An element is in a list if
•the element is the first element
of the list, OR

•the element is in the rest of the
listlogic> (in 4 (4 3 2 1))

Success!
logic> (in 4 (1 2 3 4))
Success!
logic> (in ?x (1 2 3 4))
Success!
x: 1
x: 2
x: 3
x: 4

logic> (in 4 (1 2 3 4))
Success!

Bindings:
elem: 4
first: 1
rest: (2 3 4)

(fact (ancestor ?x ?y)
 (parent ?x ?z))

Variables start with a
question mark (?)

Logic will figure out all
symbols that can fit the

variable

Base case

Recursive
case

Dot notation splits a list
into first and rest

