
SQL, TAIL RECURSION, STREAMS, AND LOGIC

COMPUTER SCIENCE 61A

August 8 to August 12, 2015

1 SQL

Name Genre Rating Type
Antman Action 7.9 Live action
Minions Comedy 6.7 Animated

Inside Out Animation 8.6 Animated
Pixels Comedy 5.4 Live action

Mission Impossible Action 8.1 Live action

1. Create a table called Summer Movieswhich contains the five rows of the table above.

Solution:
create table summer movies as

select 'Antman' as name, 'Action' as genre, 7.9 as
rating, 'Live action' as type union

select 'Minions', 'Comedy', 6.7, 'Animated' union
select 'Inside Out', 'Animation', 8.6, 'Animated' union
select 'Pixels', 'Comedy', 5.4, 'Live action' union
select 'Mission Impossible', 'Action', 8.1, 'Live

action'

1



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 2

2. Write a query to select the name and the rating of all live-action movies that are action
movies and order them by rating.

Solution:
select name, rating from Summer Movies where genre =

A c t i o n order by rating

3. Write a query to select the names of all movies which have the same genre. Make sure
and get rid of duplicates.

Solution:
select m1.name,m2.name from Summer Movies as m1, Summer

Movies as m2 where m1.genre = m2.genre and m1.name > m2.
name

4. Write a query to select all movies which score above a 7.0, ordered by their rating as
well.

Solution:
select name from Summer Movies where rating > 7.0 order by

rating

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 3

2 Tail Recursion

Consider the function sum-list:

(define (sum-list lst)
(if (null? lst)

0
(+ (car lst) (sum-list (cdr lst)))

)
)

1. Rewrite sum-list using tail recursion.

Solution: Solution 1: (must add 0 as a second argument)
(define (sum-list-tail lst sofar)

(if (null? lst)
sofar
(sum-list-tail

(cdr lst)
(+ sofar (car lst))

)
)

)

Solution 2: (allow only a list as argument)
(define (sum-list-tail lst)

(define (sum-list-helper lst sofar)
(if (null? lst)

sofar
(sum-list-helper

(cdr lst)
(+ sofar (car lst))

)
)

)
(sum-list-helper lst 0)

)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 4

3 Streams

1. Why do we use streams? Why don’t we just use linked lists instead?

Solution: Lazy Evaluation, the elements of a stream are only evaluated when they
are needed. We also have the added benefit of infinite streams.

Steams represented in scheme have very specific functions associated with them.
Stream creation: cons-stream
First element of a stream: car
Rest of the stream: stream-cdr
Empty Stream: nil
To check for emptiness: null?

2. Define a function called integers that returns a stream of integers starting from
first

Solution: (define (integers first)
(cons-stream n (integers (+ first 1))))

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 5

3. What would Scheme Print?
scm> (define ints (integers 1))

Solution: ints

scm> (car (stream-cdr ints))

Solution: 2

scm> (car ints)

Solution: 1

scm> (car (stream-cdr (stream-cdr (stream-cdr ints))))

Solution: 4

How many times did the stream have to compute a new value of rest for the last
input?

Solution: 2

scm> (define s (cons-stream (car ints)
(cons-stream (car (stream-cdr ints))

nil)))

Solution: s

scm> (stream-cdr s)

Solution: (2 . #[promise (not forced)])

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 6

4. Write conditional map stream, a scheme function which goes through every
element of a stream of numbers and returns a new stream which has either the
original element if the function applied to the number was non-negative, or the value
of the function applied to the original number otherwise.

scm> (define (f x) (- x 1))
f
scm> (define s (cons-stream 1

(cons-stream 3
(cons-stream 12)))

s
scm> (define new (conditional_map_stream s f))
new
scm> (car new)
1
scm> (car (stream-cdr new))
2

(define (conditional_map_stream s f)

Solution:
(cond ((null? s) s)

((> (f (car s)) 0)
(cons-stream (f (car s))

(conditional_map_stream (
stream-cdr s) f)

(else (cons-stream (car s) (
conditional_map_stream (stream-cdr s) f)))))))

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 7: SQL, TAIL RECURSION, STREAMS, AND LOGIC Page 7

4 Logic

1. Define a set of facts to model the table of data below:
Name Genre Rating Type

Antman Action 7.9 Live-action
Minions Comedy 6.7 Animated

Solution:
(fact (movie (name Antman) (genre action) (rating 7.9) (

type live-action)))

(fact (movie (name Minions) (genre comedy) (rating 6.7) (
type animated)))

2. Write facts for odd-length, as shown below:
logic> (odd-length (Minions are adorable))
Success!
logic> (odd-length (61a rocks))
Failed

Solution:
(fact (odd-length (?x)))
(fact (odd-length (?x ?y . ?z))

(odd-length ?z))

3. Write facts for reverse, a relation between two lists that is satisfied if and only if the
second list is the reverse of the first list. Hint: use append (given below), which was
defined in lecture.
(fact (append () ?lst2 ?lst2))
(fact (append (?elem . ?rest1) ?lst2 (?elem . ?rest2))

(append ?rest1 ?lst2 ?rest2))

Solution:
(fact reverse () ()))
(fact (reverse (?first . ?rest) ?result)

(reverse ?rest ?new-rest)
(append ?new-rest (?first) ?result))

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin


