SCHEME AND INTERPRETERS

COMPUTER SCIENCE 61A

July 31 to August 6, 2015

Scheme

1. What would Scheme print? Also, draw the box-and-pointer diagram for each of the
following linked lists:

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

(cons 1 2)

(cons 2 3 4)

(cons 1 (cons 2))

(cons 1 '(cons 2))

(cons (list 2 3) 1)

(L . 2 3)

(define a (cons 1 (cons 2 (cons 3 4))))

(car a)

(car (cdr a))

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS Page 2
How can we access 3 from a? How can we access (3 . 4) from a?

scm> (define x 5)
scm> ((lambda (c d) (+ x)) 1 2)

scm> ((lambda (x y z) (y x)) 2 / 2)
scm> (define booml (/ 1 0))

scm> booml

scm> (define boom2 (lambda () (/ 1 0)))

scm> (boom?2)

Why are booml and boom2 (defined above) different?

How can we rewrite boom2 without using the 1ambda operator?

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS Page 3

2. Implement contains, which takes in a val and a well-formed list (Ist). Returns True
if the val is in Ist or any of the lists within the Ist, and False otherwise.

scm> (define a (cons 1 (cons 2 (cons 3 nil))))
a

scm> (contains 3 a)

True

scm> (contains 6 a)

False

scm> (define b '"(1 3 (9 8) 2))
b

scm> (contains 8 b)

True

scm> (contains 2 b)
True
scm> (contains 7 b)
False

(define (contains wval 1lst)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS Page 4

Interpreters

An interpreter is a computer program that reads your input, evaluates it, and prints
the result. For each interpreter, there is an underlying language and an implemented
language. The interpreter understands the implemented language and is written in the
underlying language. For this question, we will be implementing a few functions
using python for a very simple calculator language that behaves as follows:

> 1

1

> (+ 1 3)

4

The first step to implementing a language is tokenizing, which converts the input
string to a list of tokens.

>>> tokens = tokenize("(+ (- 3 1) 4)")
>>> tokens
(rey, "+, =y 3,1, Y, 4,)

The next step is to parse the tokens and create a deep linked list that will expose the
structure of the parentheses, so we can apply the operator to the operands in the
correct order. We do this using a function called calc_read. calc_read takesin a
list of tokens, and returns a linked list that represents the calculator expression.

>>> exp = calc_read(tokens)
>>> exp
Link('+', Link(Link('-', Link (3, Link(1l))), Link(4)))

After parsing the input, we can evaluate the expression using a function called
calc_eval. calc_eval evaluates the return value of calc_read by using
calc_apply (defined below) to apply the operator (the first argument of the linked
list returned by calc_read) to the operands (the rest of the linked list returned by
calc_read). Your job is to implement calc_eval.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS

Page 5

1. In order implement calc_eval, first implement map_linked_list, a function
which takes in a function and a linked list, and applies the function to every element

of the list.
def map_linked_list (f, 1lst):

"""Returns a list of the results produced by applying f to

each element in 1lst.

>>> my_list = Link(1l, Link (2, Link (3, Link (4, empty))))

>>> map_linked list(lambda x: x » x, my_list)
Link (1, Link (4, Link (9, Link (16))))

CS 61A Summer 2015: Albert Wu and Robert Huang, with

Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph

Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS

Page 6

2. Now use map_linked_list and calc_apply in order to implement calc_eval.
If the expression is a number (a primitive), then the expression just evaluates to itself.

Otherwise, if it’s a Link, the expression is a call expression.

def calc_eval (exp) :
"""Evaluates a calculator expression.

>>> calc_eval (b)

5

>>> calc_eval (link ('+', 1link (12, 1link (3, empty))))
15

>>> subexpl = link('+x', 1link (3, link (4, empty)))

>>> subexp?2 link('=-", 1link (12, 1ink (9, empty)))

>>> exp = link('+', link (subexpl, link (subexp2, empty)))

>>> print_linked_list (exp)

< T4+ < "% 34 > < "= 12 9 > >
>>> calc_eval (exp)
15

CS 61A Summer 2015: Albert Wu and Robert Huang, with

Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph

Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

TUTORING HANDOUT 7: SCHEME AND INTERPRETERS

Page 7

3. Now, modify calc_apply so that it can handle the operator **, which is the power
function. Assume a function do_power is defined for you. Hint: The change is ex-

tremely similar to the implementation of * - + and /.
def calc_apply(op, args):
"""Applies an operator to a linked list of arguments

>>> calc_apply(+ , Link (1, Link (3, Link(5))))
9
>>> calc_apply(* % , Link (4, Link(3)))
64
if op == "+':
return do_addition (args)
elif op == "x':
return do_multiplication (args)
elif op == '-':
return do_subtraction(args)
elif op == '/':

return do_division (args)

CS 61A Summer 2015: Albert Wu and Robert Huang, with

Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph

Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin

