
MUTABLE LINKED LISTS, MUTABLE TREES,
INTERFACES, AND ITERATORS

COMPUTER SCIENCE 61A

July 25 to July 30, 2015

1 Mutable Linked Lists

1. Draw the box-and-pointer diagram for each of the following linked lists:
>>> delphine = Link(1, Link(2, Link(3, Link(4))))
>>> delphine.rest.first = 5

Solution:

>>> joseph = Link(7, Link(11))
>>> delphine.rest.rest = joseph

Solution:

>>> albert = delphine.rest.rest
>>> albert is joseph # True or False?

Solution: True

>>> robert = Link(7, link(11)) # True or False?
>>> robert is joseph

Solution: False

2. Implement the double_up method for the Link class, which mutates a linked list by
duplicating every element. See the doctest for an example:

1



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 2
class Link:

empty = ()
def __init__(self, first, rest=empty):

self.first = first
self.rest = rest

def double_up(self):
"""
>>> john = Link(1, Link(3, Link(5)))
>>> john.double_up()
>>> john
Link(1, Link(1, Link(3, Link(3, Link(5, Link(5))))))
"""

Solution:
self.rest = Link(self.first, self.rest)
if self.rest.rest is not Link.empty:

self.rest.rest.double_up()

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 3

2 Mutable Trees

1. Implement make_even, which takes a Tree and mutates it in the following way: for
each element,

• if the element is even, leave it as is

• if the element is odd, add 1 to it to make it even

class Tree:
def __init__(self, entry, subtrees=[]):

self.entry = entry
self.subtrees = list(subtrees)

def is_leaf(self):
return not self.subtrees

def make_even(t):

Solution:
if t.entry % 2 == 1:

t.entry += 1
for subtree in t.subtrees:

make_even(subtree)

3 Binary Trees and Binary Search Trees

1. How is a BinaryTree different from a Tree?

Solution: At each node, a BinaryTree has at most two subtrees, whereas a Tree
is allowed to have an arbitrary number of subtrees.

2. What is a binary search tree?

Solution: A binary search tree is a BinaryTree with the following properties:

• all of the entries in the left subtree are less than or equal to the root entry.

• all of the entries in the right subtree are greater than or equal to the root entry.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 4
3. Implement bst_to_sorted_list, which takes a binary search tree and returns a

list containing all of the elements of the binary search tree in sorted order.

class BinaryTree:
empty = ()
def __init__(self, entry, left=empty, right=empty):

self.entry = entry
self.left = left
self.right = right

def bst_to_sorted_list(bst):

Solution:
if bst is BinaryTree.empty:

return []
left = bst_to_sorted_list(bst.left)
right = bst_to_sorted_list(bst.right)
return left + [bst.entry] + right

4 Interfaces

1. What is an interface? What is it in the context of OOP?

Solution: Interfaces are sets of rules for an object. These rules are a combination
of

• function signatures and variables (without implementations)

• descriptions for each function and variable

In the context of OOP, objects can choose to implement an interface by defining
methods that following the descriptions specified in the interface.

2. What is a Python magic method?

Solution: In Python, a magic method is a method that allows an object to be used
with a built-in Python operator. There are many interfaces in Python that consist
of magic methods.

For example, the sequence interface states that an object can be considered a se-
quence if it implements

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 5

• __len__ (which allows you to use the built-in len function on the object)

• and __getitem__ (which allows you to use indexing notation on the object)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 6
3. Implement the __contains__ method for the Tree class. The __contains__

method allows you to use the built-in in operator to check if an element is in your
Tree.
class Tree:

...
def __contains__(self, value):

Solution:
if self.entry == value:

return True
for subtree in self.subtrees:

if value in subtree:
return True

return False

5 Iterators and Generators

1. What is the difference between an iterable and an iterator?

Solution: An iterable is any object that has an __iter__ method. Conceptually,
an iterable is a type of object that represents a sequence. Python specifies that if
an object is iterable, then we can iterate over that object in a for loop.

An iterator is any object that has an __iter__ method and a __next__ method.
Conceptually, an iterator is the object that does the work of moving through the
elements in an iterable, one-by-one.

The __iter__ method must return an iterator object. When you call the built-in
iter function on an object, Python implicitly calls __iter__.

Every time the __next__ method is called, it will return the next element in the
sequence. For this reason, the iterator usually needs to keep some state in order
to determine what the next element should be. When you call the built-in next
function on an object, Python implicitly calls __next__.

2. What is a generator function?

Solution: In Python, a generator function is a function that returns a generator
object (a specific type of iterator). If a function uses a yield statement, it is auto-
matically considered a generator function.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 7

When you call generator function, it does not execute any of the code in its body!
It simply returns a generator object. When you call next on that generator object,
Python will execute the code and stop at the first yield statement it encounters.
Once you call next again, Python picks up where it left off — it does not restart
the generator object.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 5: MUTABLE LINKED LISTS, MUTABLE TREES, INTERFACES, AND ITERATORS Page 8
3. Implement every_other, a generator function that takes an iterable and yields all

of the even-indexed elements (0-based indexing).
def every_other(s):

"""
>>> mystery = every_other('CASE 2601-A')
>>> classy = ''
>>> for letter in mystery:
... classy += letter
>>> classy
'CS 61A'
"""

Solution:
index = 0
for elem in s:

if index % 2 == 0:
yield elem

index += 1

4. Implement evens, a generator function that takes an iterable of numbers and yields
all of the elements that are even numbers.
def evens(s):

"""
>>> appreciate = evens([2, 11, 6, 5, 4, 13, 8, 9])
>>> for num in appreciate:
... print(num)
2
6
4
8
"""

Solution:
for elem in s:

if elem % 2 == 0:
yield elem

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin


