
RECURSION, TREE RECURSION, AND ORDERS OF
GROWTH

COMPUTER SCIENCE 61A

July 4 to July 10, 2015

1 Higher Order Functions

1. Draw an environment diagram for the following code.
tower = 12

def sather(gate):
def tower():

gate = 1
return lambda tower: tower + gate

return tower

campanile = sather(tower)
campanile()(12)

1



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 2

Solution:

2. Implement mystery, a function that passes the following doctests:
def mystery(func, n):

"""
>>> from operator import add, mul
>>> a = mystery(add, 3)
>>> a(4)
7
>>> a(12)
15
>>> b = mystery(lambda x, y: x*x + y, 4)
>>> b(5)
21
>>> b(7)
23
"""

Solution:
def mystery(func, n):

def inner(y):
return fn(n, y)

return inner

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 3

2 Recursion

1. What is a recursive function?

Solution: A recursive function is a function that calls itself in its body, either di-
rectly or indirectly.

2. What are 3 important components that all recursive functions have?

Solution:

1. One or more base cases

2. Way(s) to make the problem smaller

3. One or more recursive cases

3. What is a tree recursive function? How is it different from a linearly recursive func-
tion?

Solution: Tree recursive functions are functions that makes more than one recur-
sive call. This is different from linearly recursive functions (such as factorial), be-
cause linearly recursive functions make exactly one recursive call in the recursive
case.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 4

4. Do the following recursive functions work as intended? If not, find the bug and fix it.
def find_digit(number, digit):

"""Return true if the digit is included in the given
number. Return false otherwise.

>>> find_digit(4, 4)
True
>>> find_digit(4356, 4)
True
>>> find_digit(4356, 8)
False
>>> find_digit(3, 4)
False
"""
if number % 10 == digit:

return True
else:

return find_digit(number // 10, digit)

Solution: This function is missing another base case:
...
elif number < 10:

return False
...

def sum_digits(number):
"""Return the sum of all digits in a number.
>>> sum_digits(4)
4
>>> sum_digits(43)
7
>>> sum_digits(123456789)
45
"""
if number < 10:

return number
else:

return sum_digits(number % 10) + number // 10

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 5

Solution: The recursive call is taking in the wrong argument. The recursive call
to sum digits is being given only the ones digit, but it should take in the entire
number without the ones digit.

...
return sum_digits(number // 10) + number % 10

5. Implement sorted digits(n), a function that takes in a number n and returns True
if the digits of n are increasing from right to left.
def sorted_digits(number):

"""Return True if the digit is in increasing order from
rightmost digit to leftmost digit. (Consecutive digits
that are the same are allowed.) Also return True if it
has only one digit. Return False otherwise.

>>> sorted_digits(2)
True
>>> sorted_digits(22222)
True
>>> sorted_digits(9876543210)
True
>>> sorted_digits(9087654321)
False
"""

Solution:
ones_digit = number % 10
rest = number // 10
if rest == 0:

return True
elif ones_digit > rest % 10:

return False
else:

return sorted_digits(rest)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 6

6. Implement path(n), which returns the number of paths from one corner of an n x n
grid to the opposite corner.

Consider an insect in an N by N grid. The insect starts at the bottom left corner, (0,
0), and wants to end up at the top right corner, (N-1, N-1). The insect is only capable
of moving right or up. Write a function paths that takes a grid length and width and
returns the number of different paths the insect can take from the start to the goal.
(There is a closed-form solution to this problem, but try to answer it procedurally
using recursion.)

For example, the 2 by 2 grid has a total of two ways for the insect to move from the
start to the goal. For the 3 by 3 grid, the insect has 6 different paths (only 3 are shown
above).

def paths(n):
"""Return the number of paths from one corner of an
N by N grid to the opposite corner.

>>> paths(2)
2
>>> paths(3)
6
>>> paths(10)
48620
"""

Solution:
def helper(row, col):

if row == 1 or col == 1:
return 1

return helper(row-1, col) + helper(row, col-1)
return helper(n, n)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 2: RECURSION, TREE RECURSION, AND ORDERS OF GROWTH Page 7

3 Orders of growth

1. Write down the orders of growth for the following functions in terms of n.
def a(n):

if n <= 0:
return 1

return 1 + a(n // 2)

Solution: O(log(n))

def loopy(n):
result = 0
while n > 0:

result += n
n -= 1

return result

Solution: O(n)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin


