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1 Expressions and Functions

What would Python print?

1. Order of evaluation:
>>> def jurassic(park, world):
... print(world)
... return park - world
>>> def big(dino):
... print(dino)
... return 2 * dino
... print(dino + 1)
>>> closed = jurassic(jurassic(5, 4), big(7))

Solution:
4
7
14

>>> closed

Solution:
-13

1
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2. print vs. return
>>> x = print(42)

Solution: 42

>>> x

Solution: Nothing shows up. This is because x is assigned to None (the the return
value of print)

>>> def foo(y):
... return y * y
>>> def bar(y):
... print(y * y)
>>> a = foo(4)
>>> a == 16

Solution: True

>>> b = bar(4)

Solution: 16

>>> b == 16

Solution:
False

Since bar does not have a return value, it implicitly returns None. Thus, b is
assigned to None.

>>> def garply(y):
... print(y * y)
... return 3
>>> c = garply(4)

Solution: 16

>>> c

Solution: 3
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2 Control structures

1. Implement factorial(n), which takes a non-negative n and returns all the num-
bers from 1 to n multiplied together. For example, factorial(5) = 1 * 2 * 3

* 4 * 5 = 120.

Note: Your function should be able to compute factorial(0) to be 1, as defined in
mathematics.
def factorial(n):

"""Returns the product of numbers from 1 to n.

>>> factorial(0)
1
>>> factorial(1)
1
>>> factorial(5) # 1 * 2 * 3 * 4 * 5
120
"""

Solution:
i, total = 1, 1
while i <= n:

total = total * i
i += 1

return total
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3 Higher order functions

1. Draw an environment diagram for the following code:
x = 5

def illum(nati):
y = nati + x
return nati - x

def files(x):
return illum(x) - x

x = files(6)
illum(4)

Solution:

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 1: BASICS, CONTROL STRUCTURES, AND HIGHER ORDER FUNCTIONS Page 5

2. Draw an environment diagram for the following code:
y = 1

def cons(piracy):
def confirmed(x):

return piracy(x + y)
y = 4
return confirmed

cons(lambda a: a + y)(5)

Solution:
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