
BASICS, CONTROL STRUCTURES, AND HIGHER
ORDER FUNCTIONS

COMPUTER SCIENCE 61A

June 23 to July 3, 2015

1 Expressions and Functions

What would Python print?

1. Order of evaluation:
>>> def jurassic(park, world):
... print(world)
... return park - world
>>> def big(dino):
... print(dino)
... return 2 * dino
... print(dino + 1)
>>> closed = jurassic(jurassic(5, 4), big(7))

Solution:
4
7
14

>>> closed

Solution:
-13

1



TUTORING HANDOUT 1: BASICS, CONTROL STRUCTURES, AND HIGHER ORDER FUNCTIONS Page 2

2. print vs. return
>>> x = print(42)

Solution: 42

>>> x

Solution: Nothing shows up. This is because x is assigned to None (the the return
value of print)

>>> def foo(y):
... return y * y
>>> def bar(y):
... print(y * y)
>>> a = foo(4)
>>> a == 16

Solution: True

>>> b = bar(4)

Solution: 16

>>> b == 16

Solution:
False

Since bar does not have a return value, it implicitly returns None. Thus, b is
assigned to None.

>>> def garply(y):
... print(y * y)
... return 3
>>> c = garply(4)

Solution: 16

>>> c

Solution: 3

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 1: BASICS, CONTROL STRUCTURES, AND HIGHER ORDER FUNCTIONS Page 3

2 Control structures

1. Implement factorial(n), which takes a non-negative n and returns all the num-
bers from 1 to n multiplied together. For example, factorial(5) = 1 * 2 * 3

* 4 * 5 = 120.

Note: Your function should be able to compute factorial(0) to be 1, as defined in
mathematics.
def factorial(n):

"""Returns the product of numbers from 1 to n.

>>> factorial(0)
1
>>> factorial(1)
1
>>> factorial(5) # 1 * 2 * 3 * 4 * 5
120
"""

Solution:
i, total = 1, 1
while i <= n:

total = total * i
i += 1

return total

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 1: BASICS, CONTROL STRUCTURES, AND HIGHER ORDER FUNCTIONS Page 4

3 Higher order functions

1. Draw an environment diagram for the following code:
x = 5

def illum(nati):
y = nati + x
return nati - x

def files(x):
return illum(x) - x

x = files(6)
illum(4)

Solution:

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin



TUTORING HANDOUT 1: BASICS, CONTROL STRUCTURES, AND HIGHER ORDER FUNCTIONS Page 5

2. Draw an environment diagram for the following code:
y = 1

def cons(piracy):
def confirmed(x):

return piracy(x + y)
y = 4
return confirmed

cons(lambda a: a + y)(5)

Solution:

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Andrew Blum, Anish Balaji, Anthony de la Paz, Diana Advani, Delphine Ho, Fahad Kamran, Gunjan Baid, Joseph
Simonian, Ken Katagiri, Meha Bakshi, Peter Xu, Raymond Chan, Tiffany Perumpail, and Zhen Qin


