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(Some images borrowed from CS 188.)
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Project 3 composition revisions due Wednesday night.

Project 4 due tonight (Monday).
« Office hours from 4-7pm today in the Woz.

Homework 11 due tonight - just a survey!

Project 4 contest due tomorrow (Tuesday) night.
« Top 3 entries in each category get extra credit! Only one entry so far.

Final on Thursday, 3-6pm in 2050 VLSB.
- Review session tomorrow, 5-8pm in the Woz.

Tuesday, Wednesday, and Thursday sections canceled.

« Instead, TAs will lead topic-themed discussions Tuesday and Wednesday.
e Details will be posted on Piazza.

« Chris and Cale's 9:30-11am labs on Tuesday are NOT canceled.
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What 1s Machine Learning?
Natural Language Processing

Computer Vision

Robotics
Game Playing

and much morel

What do these all have in common?
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What 1s machine learning?

« A subfield of computer science.

« The study of algorithms that analyze data to makRe decisions.

« Examples of decisions:

« Is this email ham or spam?

"Il est impossible aux journalistes de
rentrer dans les régions tibétaines"

Bruno Philip, correspondant du
"Monde" en Chine, estime que les
journalistes de I'AFP qui ont été
expulsés de la province tibétaine du
Qinghai "n'étaient pas dans
l'illégalité".

Les faits Le dalai-lama dénonce
I'""enfer” imposé au Tibet depuis sa
fuite, en 1959

vidéo Anniversaire de la rébellion
P NP WA T e ey ey

« How do I translate this sentence?’?

"It is impossible for journalists to enter
Tibetan areas"

Philip Bruno, correspondent for
"World" in China, said that journalists
of the AFP who have been deported
from the Tibetan province of Qinghai
"were not illegal."

Facts The Dalai Lama denounces the ! HH
"hell" imposed since he fled Tibetin | §
1959

video Anniversary of the Tibetan
rebellion: China on guard

el




Machine Learning

What 1s machine learning?
« A subfield of computer science.
« The study of algorithms that analyze data to makRe decisions.
« Examples of decisions: T3

« Is this email ham or spam?

+ How do I translate this sentence? ..~ "%

e Will this user like this restaurant?
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K-means Clustering
« The data: restaurant locations

e The decision: which cluster does each

belong to? e
Called unsupervised lLearning, because no one

tells 1t what the correct decision 1s.
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Linear Regression

« The data: user ratings

" aalifornig
yporiar stadiury

« The decision: what rating would the | L~ % ;
user give a new restaurant?
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Linear Regression

« The data: user ratings

« The decision: what rating would the
user give a new restaurant?

Called supervised lLearning, because -
some correct decisions are given. sommiedeg/— oa% Y e BN
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- So far, we’ve looked at two specific machine
learning algorithms from two different domains.

- Today, we will focus on a subclass of problems 1in
machine learning, known as reinforcement Learning
problems, and algorithms for these problems.



Reinforcement Learning



Reinforcement Learning

What 1s reinforcement learning?



Reinforcement Learning

What 1s reinforcement learning?

« Concerned with Llearning behavior through experience.



Reinforcement Learning

What 1s reinforcement learning?
« Concerned with Llearning behavior through experience.

« Two maln components: the agent and the environment.



Reinforcement Learning

What 1s reinforcement learning?

« Concerned with Llearning behavior through experience.
« Two maln components: the agent and the environment.
« The agent lives 1n and interacts with the

environment, and through this experience learns a
good pattern of behavior.
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Suppose you go on a date with someone.

 In reinforcement learning terms, you are the agent. g | | A
45 minutes of talking

. Everything else (the other person, the setting, etc.) is apout hamsters later. .
the environment. - 7
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An Analogy

Suppose you go on a date with someone.

« In reinforcement learning terms, you are the agent. Wow, you're a
really great person.
- Everything else (the other person, the setting, etc.) is
the environment.

° Someone

« At the beginning of the date, you might not know how to
act, so you try different things to see how the other
person responds.

- As the date goes on, you slowly figure out how you should
behave based on what you’ve tried so far, and how it went.

- If you’re a good agent, you may even learn how to behave
really, really well!



An Analogy

Suppose you go on a date with someone.

« In reinforcement learning terms, you are the agent.

DATK:

SUCCLESS

- Everything else (the other person, the setting, etc.) is
the environment.

« At the beginning of the date, you might not know how to
act, so you try different things to see how the other
person responds.

Someone

- As the date goes on, you slowly figure out how you should
behave based on what you’ve tried so far, and how it went.

- If you’re a good agent, you may even learn how to behave
really, really well!
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RL Example: Gridworld

What 1s the environment?

What 1s the agent?

The Problem: How do we get to the goal (green) from
the start (blue) as guickly as possible while
avoiding the obstacles (red)?
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The RL Setting

The environment:
« States (s):
Configuration of the agent and environment.
- Actions (a):
What can the agent do 1n a state?
e Reward function (R):
What reward does the agent get for each state?

The agent:

* Policy (m):
Given a state, what action will the agent take?
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« The environment of Gridworld, 1n more detaill:

« States (s):

What square 1s the agent 1in?

« Actions (a):

Go to an adjacent square, or stay put.

« Reward function:

2?7
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« The environment of Gridworld, 1n more detaill:
« States (s):
What square is the agent in?
« Actions (a):
Go to an adjacent square, or stay put.
- Reward function: ???

The Problem:

"

How do we get to the goal from the start as guickly as

possible while avoiding the obstacles?

In RL terminology:

What 1s the optimal policy n* that maximizes my expected
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Value Function

« Reward function: R(s) = reward of being in state s
« Value function: V(s) = value of being in state s
« The value of s 1s the long-term expected reward starting from s.

« How do we determine where to go after s?

* We use our policy m to determine which actions to take.
« So, the value function also depends on our policy.

« How do we determine the value of a state?

« The value of a state is the reward of the state plus the value
of the state we end up in next.

V7™(s) = —I—ZPS m(s),s)V™(s')
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Value Function

V™(s) = +ZPSW sSHYV™(s)

« How do we solve this equatlon? Use recursion!
« What’s our base case?

« If we’re at our goal, then there 1s no next
state, so the value 1is just the reward.

def V(s):
reward = R(s)
if 1is goal(s):
return reward
return reward +

sum([P(s, pi(s), n s) * V(n s) for n s in states])
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Policy Iteration

* Now that we know V(s), we improve our policy m to a
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