Lecture 29: Machine Learning

Marvin Zhang 08/10/2015

(Some images borrowed from CS 188.)

• Project 3 composition revisions due Wednesday night.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.
 - Review session tomorrow, 5-8pm in the Woz.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.
 - Review session tomorrow, 5-8pm in the Woz.
- Tuesday, Wednesday, and Thursday sections canceled.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.
 - Review session tomorrow, 5-8pm in the Woz.
- Tuesday, Wednesday, and Thursday sections canceled.
 - Instead, TAs will lead topic-themed discussions Tuesday and Wednesday.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.
 - Review session tomorrow, 5-8pm in the Woz.
- Tuesday, Wednesday, and Thursday sections canceled.
 - Instead, TAs will lead topic-themed discussions Tuesday and Wednesday.
 - Details will be posted on Piazza.

- Project 3 composition revisions due Wednesday night.
- Project 4 due tonight (Monday).
 - Office hours from 4-7pm today in the Woz.
- Homework 11 due tonight just a survey!
- Project 4 contest due tomorrow (Tuesday) night.
 - Top 3 entries in each category get extra credit! Only one entry so far.
- Final on Thursday, 3-6pm in 2050 VLSB.
 - Review session tomorrow, 5-8pm in the Woz.
- Tuesday, Wednesday, and Thursday sections canceled.
 - Instead, TAs will lead topic-themed discussions Tuesday and Wednesday.
 - Details will be posted on Piazza.
 - Chris and Cale's 9:30-11am labs on Tuesday are NOT canceled.

• Natural Language Processing

• Natural Language Processing

- Natural Language Processing
- Computer Vision

- Natural Language Processing
- Computer Vision

- Natural Language Processing
- Computer Vision
- Robotics

- Natural Language Processing
- Computer Vision
- Robotics

- Natural Language Processing
- Computer Vision
- Robotics

- Natural Language Processing
- Computer Vision
- Robotics
- Game Playing

- Natural Language Processing
- Computer Vision
- Robotics
- Game Playing

- Natural Language Processing
- Computer Vision
- Robotics
- Game Playing
- and much more!

- Natural Language Processing
- Computer Vision
- Robotics
- Game Playing
- and much more!

• What do these all have in common?

What is machine learning?

• A subfield of computer science.

- A subfield of computer science.
- The study of algorithms that analyze data to make decisions.

- A subfield of computer science.
- The study of algorithms that analyze data to make decisions.
- Examples of decisions:

- A subfield of computer science.
- The study of algorithms that analyze data to make decisions.
- Examples of decisions:
 - Is this email ham or spam?

What is machine learning?

- A subfield of computer science.
- The study of algorithms that analyze data to make decisions.
- Examples of decisions:
 - Is this email ham or spam?

How do I translate this sentence?

- A subfield of computer science.
- The study of algorithms that analyze data to make decisions.
- Examples of decisions:
 - Is this email ham or spam?
 - How do I translate this sentence?
 - Will this user like this restaurant?

Machine Learning Example: Maps

Machine Learning Example: Maps

K-means Clustering

K-means Clustering

K-means Clustering

K-means Clustering

• The data: restaurant locations

K-means Clustering

- The data: restaurant locations
- The decision: which cluster does each belong to?

K-means Clustering

- The data: restaurant locations
- The decision: which cluster does each belong to?

Called *unsupervised Learning*, because no one tells it what the correct decision is.

Linear Regression

• The data: user ratings

- The data: user ratings
- The decision: what rating would the user give a new restaurant?

Linear Regression

- The data: user ratings
- The decision: what rating would the user give a new restaurant?

Called *supervised learning*, because some correct decisions are given.

Outline

Outline

 So far, we've looked at two specific machine learning algorithms from two different domains.

Outline

- So far, we've looked at two specific machine learning algorithms from two different domains.
- Today, we will focus on a subclass of problems in machine learning, known as reinforcement learning problems, and algorithms for these problems.

What is reinforcement learning?

What is reinforcement learning?

· Concerned with learning behavior through experience.

What is reinforcement learning?

- Concerned with learning behavior through experience.
- Two main components: the agent and the environment.

What is reinforcement learning?

- · Concerned with learning behavior through experience.
- Two main components: the agent and the environment.
- The agent lives in and interacts with the environment, and through this experience learns a good pattern of behavior.

Suppose you go on a date with someone.

• In reinforcement learning terms, you are the agent.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.
- If you're a good agent, you may even learn how to behave really, really well!

Suppose you go on a date with someone.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.
- If you're a good agent, you may even learn how to behave really, really well!

45 minutes of talking about hamsters later...

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.
- If you're a good agent, you may even learn how to behave really, really well!

An Analogy

Suppose you go on a date with someone.

- In reinforcement learning terms, you are the agent.
- Everything else (the other person, the setting, etc.) is the *environment*.
- At the beginning of the date, you might not know how to act, so you try different things to see how the other person responds.
- As the date goes on, you slowly figure out how you should behave based on what you've tried so far, and how it went.
- If you're a good agent, you may even learn how to behave really, really well!

RL Example: Gridworld

RL Example: Gridworld

What is the environment?

What is the agent?

RL Example: Gridworld

What is the environment?

What is the agent?

The Problem: How do we get to the goal (green) from the start (blue) as quickly as possible while avoiding the obstacles (red)?

The environment:

The environment:

• States (s): Configuration of the agent and environment.

The environment:

- States (s): Configuration of the agent and environment.
- Actions (a):
 What can the agent do in a state?

The environment:

- States (s):
 Configuration of the agent and environment.
- Actions (a):
 What can the agent do in a state?
- Reward function (R):
 What reward does the agent get for each state?

The environment:

- States (s):
 Configuration of the agent and environment.
- Actions (a):
 What can the agent do in a state?
- Reward function (R):
 What reward does the agent get for each state?

The agent:

The environment:

- States (s): Configuration of the agent and environment.
- Actions (a):
 What can the agent do in a state?
- Reward function (R):
 What reward does the agent get for each state?

The agent:

• Policy (π) : Given a state, what action will the agent take?

• The environment of Gridworld, in more detail:

- The environment of Gridworld, in more detail:
 - States (s):

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):
 Go to an adjacent square, or stay put.

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):
 Go to an adjacent square, or stay put.
 - Reward function: ???

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):
 Go to an adjacent square, or stay put.
 - Reward function: ???

The Problem:

How do we get to the goal from the start as quickly as possible while avoiding the obstacles?

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):
 Go to an adjacent square, or stay put.
 - Reward function: ???

The Problem:

How do we get to the goal from the start as quickly as possible while avoiding the obstacles?

In RL terminology:

What is the optimal policy π^* that maximizes my expected reward over time?

- The environment of Gridworld, in more detail:
 - States (s):
 What square is the agent in?
 - Actions (a):
 Go to an adjacent square, or stay put.
 - Reward function: ???

The Problem:

How do we get to the goal from the start as quickly as possible while avoiding the obstacles?

In RL terminology:

What is the optimal policy π^* that maximizes my expected reward over time?

Gridworld Reward Function

Gridworld Reward Function

Gridworld Reward Function

• Reward function: R(s) = reward of being in state s

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?
 - We use our policy π to determine which actions to take.

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?
 - We use our policy π to determine which actions to take.
 - So, the value function also depends on our policy.

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?
 - We use our policy π to determine which actions to take.
 - So, the value function also depends on our policy.
- How do we determine the value of a state?

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?
 - We use our policy π to determine which actions to take.
 - So, the value function also depends on our policy.
- How do we determine the value of a state?
 - The value of a state is the *reward* of the state plus the *value* of the state we end up in next.

- Reward function: R(s) = reward of being in state s
- Value function: V(s) = value of being in state s
- The value of s is the long-term expected reward starting from s.
- How do we determine where to go after s?
 - We use our policy π to determine which actions to take.
 - So, the value function also depends on our policy.
- How do we determine the value of a state?
 - The value of a state is the *reward* of the state plus the *value* of the state we end up in next.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

• How do we solve this equation? Use recursion!

Value Function

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- How do we solve this equation? Use recursion!
- What's our base case?

Value Function

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- How do we solve this equation? Use recursion!
- What's our base case?
 - If we're at our *goal*, then there is no next state, so the value is just the reward.

Value Function

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- How do we solve this equation? Use recursion!
- What's our base case?
 - If we're at our goal, then there is no next state, so the value is just the reward.

```
def V(s):
    reward = R(s)
    if is_goal(s):
        return reward
    return reward +
        sum([P(s, pi(s), n_s) * V(n_s) for n_s in states])
```


• Arrows denote the policy π .

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

- Arrows denote the policy π .
- What are the values of the states, assuming no random movements?

• What we just did was policy evaluation, determining the value of states given our policy π . Simply put, we figured out how good our policy is.

- What we just did was policy evaluation, determining the value of states given our policy π . Simply put, we figured out how good our policy is.
- But remember, what we are really interested in is the optimal policy $\pi^*!$ How do we find this?

- What we just did was policy evaluation, determining the value of states given our policy π . Simply put, we figured out how good our policy is.
- But remember, what we are really interested in is the optimal policy $\pi^*!$ How do we find this?
- We need one more step policy iteration.

- What we just did was policy evaluation, determining the value of states given our policy π . Simply put, we figured out how good our policy is.
- But remember, what we are really interested in is the optimal policy $\pi^*!$ How do we find this?
- We need one more step policy iteration.

• Arrows denote the policy.

- Arrows denote the policy.
- Based on the value function, which action of the current policy should we change?

- Arrows denote the policy.
- Based on the value function, which action of the current policy should we change?

• Now that we know V(s), we improve our policy π to a new policy π , as follows:

- Now that we know V(s), we improve our policy π to a new policy π , as follows:
 - For every state s, π ' picks the action that leads to the next state s' with the highest value.

- Now that we know V(s), we improve our policy π to a new policy π , as follows:
 - For every state s, π ' picks the action that leads to the next state s' with the highest value.

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- Now that we know V(s), we improve our policy π to a new policy π , as follows:
 - For every state s, π ' picks the action that leads to the next state s' with the highest value.

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• This is called policy iteration.

- Now that we know V(s), we improve our policy π to a new policy π , as follows:
 - For every state s, π ' picks the action that leads to the next state s' with the highest value.

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• This is called policy iteration.

```
def new_policy(s):
    return max(actions,
         key=lambda a: sum([P(s, a, n_s) * V(n_s) for n_s in states]))
```

Policy Iteration

- Now that we know V(s), we improve our policy π to a new policy π , as follows:
 - For every state s, π ' picks the action that leads to the next state s' with the highest value.

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• This is called policy iteration.

```
def new_policy(s):
    return max(actions,
         key=lambda a: sum([P(s, a, n_s) * V(n_s) for n_s in states]))
```

• So, to find the optimal policy:

- So, to find the optimal policy:
 - Initialize some policy π .

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

• Find a better policy π ' using policy iteration.

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• If $\pi == \pi$, return π .

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- If $\pi == \pi$, return π .
- Otherwise, set π equal to π .

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- If $\pi == \pi$, return π .
- Otherwise, set π equal to π .
- We can prove that this π we return is optimal, i.e. π == π^* ! We won't do the math, though.

- So, to find the optimal policy:
 - Initialize some policy π .
 - Repeat:
 - Determine V(s) using policy evaluation.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- If $\pi == \pi$, return π .
- Otherwise, set π equal to π .
- We can prove that this π we return is optimal, i.e. π == π^* ! We won't do the math, though.

• Reward function (R): how good is a state? (short-term)

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

Policy iteration:

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- Policy iteration:
 - Using our value function V to get a better policy π .

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- Policy iteration:
 - Using our value function V to get a better policy π .

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- Policy iteration:
 - Using our value function V to get a better policy π .

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• Basically every RL algorithm is a combination of policy evaluation and policy iteration! Let's take a closer look at two such algorithms.

- Reward function (R): how good is a state? (short-term)
- Value function (V): how good is a state? (Long-term)
 - Measures long-term expected reward.
 - Depends on the current policy π .
- Policy evaluation:
 - Evaluating our current policy π to get a value function V.

$$V^{\pi}(s) = R(s) + \sum_{s'} P(s, \pi(s), s') V^{\pi}(s')$$

- Policy iteration:
 - Using our value function V to get a better policy π .

$$\pi'(s) = \arg\max_{a} \sum_{s'} P(s, a, s') V^{\pi}(s')$$

• Basically every RL algorithm is a combination of policy evaluation and policy iteration! Let's take a closer look at two such algorithms.

 Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

• If V doesn't change, return the policy π that acts according to the maximum value of V.

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

• If V doesn't change, return the policy π that acts according to the maximum value of V.

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} \sum_{s'} P(s, a, s') V(s')$$

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

• If V doesn't change, return the policy π that acts according to the maximum value of V.

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} \sum_{s'} P(s, a, s') V(s')$$

• Again, we can show that this policy is optimal, i.e. $\pi == \pi^*!$ Again, let's not do the math.

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

• If V doesn't change, return the policy π that acts according to the maximum value of V.

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} \sum_{s'} P(s, a, s') V(s')$$

• Again, we can show that this policy is optimal, i.e. $\pi == \pi^*!$ Again, let's not do the math.

(demo)

- Value iteration is an algorithm that combines the policy evaluation and policy iteration steps into one single step.
- Repeat:
 - For all states s, determine V(s), and set V(s) to its maximum possible value.

$$V(s) = R(s) + \max_{a} \sum_{s'} P(s, a, s') V(s')$$

• If V doesn't change, return the policy π that acts according to the maximum value of V.

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} \sum_{s'} P(s, a, s') V(s')$$

• Again, we can show that this policy is optimal, i.e. $\pi == \pi^*!$ Again, let's not do the math.

What if there are way too many states and actions to try?

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.
- What if we don't know how the environment works?

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.
- What if we don't know how the environment works?
 - It's reasonable to think that the agent doesn't completely understand what the next possible states are from taking an action.

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.
- What if we don't know how the environment works?
 - It's reasonable to think that the agent doesn't completely understand what the next possible states are from taking an action.
 - In this case, we have to try different things in order to figure out our environment this is called *exploration*.

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.
- What if we don't know how the environment works?
 - It's reasonable to think that the agent doesn't completely understand what the next possible states are from taking an action.
 - In this case, we have to try different things in order to figure out our environment this is called *exploration*.
 - Sometimes, we also want to just keep doing what we know is good this is called exploitation.

- What if there are way too many states and actions to try?
 - We have to find a way to only look at a subset of states and actions, and we also need to reasonably approximate their values.
- What if we don't know how the environment works?
 - It's reasonable to think that the agent doesn't completely understand what the next possible states are from taking an action.
 - In this case, we have to try different things in order to figure out our environment this is called *exploration*.
 - Sometimes, we also want to just keep doing what we know is good this is called exploitation.

• In RBPI, instead of full policy evaluation, we run simulations, or *rollouts*, to approximate our value function.

- In RBPI, instead of full policy evaluation, we run simulations, or rollouts, to approximate our value function.
- This addresses the limitations on the previous slide.

- In RBPI, instead of full policy evaluation, we run simulations, or rollouts, to approximate our value function.
- This addresses the limitations on the previous slide.
 - The *subset* of states that we look at are the states we encounter during our rollouts.

- In RBPI, instead of full policy evaluation, we run simulations, or *rollouts*, to approximate our value function.
- This addresses the limitations on the previous slide.
 - The *subset* of states that we look at are the states we encounter during our rollouts.
 - The approximation of the value of the states is by measuring our total reward over of course of our rollout.

- In RBPI, instead of full policy evaluation, we run simulations, or rollouts, to approximate our value function.
- This addresses the limitations on the previous slide.
 - The *subset* of states that we look at are the states we encounter during our rollouts.
 - The approximation of the value of the states is by measuring our total reward over of course of our rollout.
 - We balance exploration and exploitation by sometimes randomly selecting our action.

(demo)

- In RBPI, instead of full policy evaluation, we run simulations, or rollouts, to approximate our value function.
- This addresses the limitations on the previous slide.
 - The *subset* of states that we look at are the states we encounter during our rollouts.
 - The approximation of the value of the states is by measuring our total reward over of course of our rollout.
 - We balance exploration and exploitation by sometimes randomly selecting our action.

(demo)

- In RBPI, instead of full policy evaluation, we run simulations, or rollouts, to approximate our value function.
- This addresses the limitations on the previous slide.
 - The *subset* of states that we look at are the states we encounter during our rollouts.
 - The approximation of the value of the states is by measuring our total reward over of course of our rollout.
 - We balance exploration and exploitation by sometimes randomly selecting our action.

 We've talked about three of the projects in this class, and how machine learning applies to them.

- We've talked about three of the projects in this class, and how machine learning applies to them.
- What about the last one? How might machine learning apply to the Scheme project?

- We've talked about three of the projects in this class, and how machine learning applies to them.
- What about the last one? How might machine learning apply to the Scheme project?