SCHEME

COMPUTER SCIENCE 61A

July 28, 2015

Introduction

In the next part of the course, we will be working with the Scheme programming lan-
guage. In addition to learning how to write Scheme programs, we will eventually write a
Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back to 1958.
The popularity of Scheme within the programming language community stems from its
simplicity — in fact, previous versions of CS 61A were taught in the Scheme language.

Primitives

Scheme has a set of atomic primitive expressions. Atomic means that these expressions
cannot be divided up.

scm> 123

123

scm> 123.123

123.123

scm> #t

True

scm> #f

False

scm> 'a ; this is a symbol
a

DISCUSSION 11: SCHEME Page 2
To define variables:

scm> (define a 3)
a

scm> a

3

The define statement binds a value to a variable (just like the assignment operator in
Python); in addition, de fine returns the variable name (in this case, a).

More precisely, define returns the symbol a. As you saw above, when you type 'a,
you also get the symbol a. This is because when you use the single quote, you're telling
Scheme not to follow the normal rules of evaluation and just have the symbol return as
itself.

2.1 Questions

1. What would Scheme print?
scm> (define a 1)

scm> a
scm> (define b a)
scm> b
scm> (define c 'a)

scm> C

Call Expressions

Now, just defining variables and printing out primitives isn’t very useful. You want to
call functions too:

scm> (+ 1 2)

3

scm> (- 2 3)

-1

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 11: SCHEME Page 3
scm> (x 6 3)

18

scm> (/ 5 2)

2.5

scm> (+ 1 (= 3 4))
13

To call a function in Scheme, you first need a set of parenthses. Inside of the parentheses,
you give the symbol for the function name, then you give the arguments (remember the
spaces!).

Evaluating a Scheme function call works just like Python:

1. Evaluate the operator (the first expression after the (), then evaluate each of the
arguments.

2. Apply the operator to those evaluated arguments.

When you evaluate (+ 1 2), you evaluate the + symbol which is bound to a built-in
addition function, then you evaluate 1 and 2. Finally, you apply the addition function to
1 and 2.

Some important functions you’ll want to use are:
® +, -, %, /

® eq?/ :I >/ >:/ </ <:

3.1 Questions

1. What would Scheme print?
scm> (+ 1)

scm> (*x 3)

scm> (+ (x 3 3) (x 4 4))

scm> (define a (define b 3))

scm> a

scm> b

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DI1SCUSSION 11: SCHEME Page 4

Special Forms

There are certain expressions that look like function calls, but don't follow the rule for
order of evaluation. These are called special forms. You've already seen one — define,
where the first argument, the variable name, doesn’t actually get evaluated to a value.

4.1 If Statements

Another common special form is the i £ form. An if expression looks like:
(1f <CONDITION> <THEN> <ELSE>)

where <CONDITION>, <THEN> and <ELSE> are expressions. First, <CONDITION> is eval-
uated. If it evaluates to #f, then <ELSE> is evaluated. Otherwise, <THEN> is evaluated.
Every primitive expression that is not False evaluates to “true”.

scm> (if (< 4 5) 1 2)

1

scm> (if False (/ 1 0) 42)

42

4.2 Boolean operators

Boolean operators (and and or) are also special forms because they are short-circuiting
operators (just like in Python).
scm> (and 1 2 3)

3

scm> (or 1 2 3)

1

scm> (or True (/ 1 0))
True

scm> (and False (/1 0))
False

scm> (not 3)

False

scm> (not True)

False

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 11: SCHEME Page 5
4.3 Questions

1. What does Scheme print?
scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (» 3 2)))

scm> ((if (< 4 3) + =) 4 100)

4.4 Lambdas and Defining Functions

Scheme has lambdas too! The syntax is
(lambda (<PARAMETERS>) <EXPR>)

Like in Python, lambdas are function values. Also like in Python, when a lambda ex-
pression is called in Scheme, a new frame is created where the parameters are bound to
the arguments passed in. Then, <EXPR> is evaluated under this new frame. Note that
<EXPR> is not evaluated until the lambda function is called.

scm> (define x 3)

X

scm> (define y 4)

y

scm> ((lambda (x y) (+ x y)) 6 7)

13

Like in Python, lambda functions are also values! So you can do this to define functions:
scm> (define square (lambda (x) (x x X)))

square

scm> (square 4)

16

This can be a bit tedious though. Luckily Scheme has a shortcut: our old friend define:
scm> (define (square x) (* x X))

square

scm> (square 5)

25

Whenyoudo (define (<FUNCTION NAME> <PARAMETERS>) <EXPR>),Scheme will
automatically transformitto (define <FUNCTION NAME> (lambda (<PARAMETERS>)
<EXPR>). In this way, lambdas are more central to Scheme than they are to Python.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 11: SCHEME Page 6
4.5 Let

There is also a special form based around 1ambda: let. The structure of 1et is as follows:
(let ((<SYMBOL1l> <EXPR1>)

(<SYMBOLN> <EXPRN>))
<BODY>)

This special form really just gets transformed to:
((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

let effectively just binds symbols to expressions, then runs its body. This can be useful if
you need to reuse a value multiple times, or if you want to make your code more readable:
(define

(if

(sin x)

(< x 0.000001)

X

(let ((recursive-step (sin (/ x 3))))
(= (*# 3 recursive-step)

(» 4 (expt recursive-step 3))))))

4.6 Questions

1. Write a function that calculates factorial. (Note we have not seen any iteration yet.)
(define (factorial x)

2. Write a function that calculates the n** Fibonacci number.
(define (fib n)
(if (< n 2)
1

Pairs and Lists

So far, we have lambdas and a few atomic primitives. How do we create larger, more
complicated data structures? Well, the most important data structure in Scheme is the
pair. A pair is an abstract data type with the constructor cons (which takes two argu-
ments), and two selectors, car and cdr (which get the first and second argument respec-

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 11: SCHEME Page 7
tively). car and cdr don’t stand for anything anymore, but if you want the history go to
http://en.wikipedia.org/wiki/CAR_and_CDR.

scm> (define a (cons 1 2))

a

scm> a

(1 . 2)

scm> (car a)
1

scm> (cdr a)
2

Note that when a pair is printed, the car and cdr elements are separated by a period.
Remember, cons always takes in exactly two arguments.

A common data structure that you build out of pairs is the list. A list is either the empty
list, which is another primitive represented as ’ () or nil, or a cons pair where the cdr
is a list. (Note the similarity to Links!)

scm> ' ()

()

scm> nil

()

scm> (cons 1 (cons 2 nil))

(1 2)

scm> (cons 1 (cons 2 (cons 3 nil)))

(1 2 3)

Note that there are no dots here. When a dot is followed by a left parenthesis, the dot,
left parenthesis, and matching right parenthesis are deleted. You can check if a listis nil
with the null? function.

A shorthand for writing out a list is:

scm> '"(1 2 3)
(L 2 3)
scm> ' (define (square x) (* X X))

(define (square x) (* x x))

You might notice that the evaluation of the second expression looks a lot like Scheme
code. That’s because Scheme code is made up of lists. When you quote an expression
(like a list), you're telling Scheme not to evaluate the expression, but instead keep it as is.
This is one of the reasons why Scheme is cool — it can be defined within itself!

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

http://en.wikipedia.org/wiki/CAR_and_CDR

DISCUSSION 11: SCHEME Page 8
5.1 Questions

1. Fill in the following to complete an abstract data type for binary trees, in which each
node has at most 2 children, 1eft and right:
(define (make-btree entry left right)
(cons entry (cons left right)))

(define (entry tree)
)

(define (left tree)

(define (right tree)
)

2. Using the above definition, write a function that sums up the entries of a binary tree,
assuming that the entries are all numbers.
(define (btree—-sum tree)

)

3. Define map, where the first argument is a function and the second a list. This should
work like Python’s map.
(define (map fn lst)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 11: SCHEME Page 9
4. Define reduce, where the first argument is a function that takes two arguments, the
second is a starting value, and the third is a list. This should work like Python’s
reduce.
(define (reduce fn s 1lst)

Extra Questions

1. Write a Scheme function that, when given an element, a list, and a position, inserts
the element into the list at that position.
(define (insert element lst position)

)

2. Write a Scheme function that, when given a list, suchas (1 2 3 4), duplicates every
elementin thelist(i.e. (1 1 2 2 3 3 4 4)).
(define (duplicate 1lst)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

