
NONLOCAL AND MUTABILITY 7
COMPUTER SCIENCE 61A

July 14, 2015

1 Mutating Lists

Many of Python’s primitive types are considered immutable, meaning that once they have
been created, their value cannot change. Examples of these immutable types include
strings, tuples, and numbers.

However, lists, dictionaries, and some other data types that are considererd mutable,
meaning the values of a specific instance or object of that type may change.

Imagine you go to CREAM on Telegraph Avenue and you order an ice-cream sandwich.
Suppose CREAM chooses to represent your order as a list like so:
>>> sandwich = ['ice-cream', 'cookie']

Suppose that, while CREAM was preparing your order, you decide you want to top your
sandwich with sprinkles. Without mutation, CREAM changes your order like so:
creates a new python list
>>> new_sandwich = sandwich + ['sprinkles']
>>> new_sandwich
['ice-cream', 'cookie', 'sprinkles']
>>> sandwich # the original list is unmodified
['ice-cream', 'cookie']

What was the point of CREAM having to make an entirely new sandwich just to add
sprinkles? They could have simply modified the original sandwich! That’s what mutation
is all about! Instead, they could have done:
>>> sandwich.append('sprinkles') # mutates original list
>>> sandwich
['ice-cream', 'cookie', 'sprinkles']

1

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 2
1.1 What Would Python Print?

1. Consider the following definitions and assignments and determine what Python would
output for each of the calls below if they were evaluated in order. It may be helpful to
draw the box and pointers diagrams to the right in order to keep track of the state.
>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
>>> lst1 == lst2 #compares each value

>>> lst1 is lst2 #compares references

>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] = 42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 3

2 List Methods

In addition to the indexing operator, lists have many mutating methods. List methods are
functions that are bound to a specific list. Some useful list methods are listed here:

1. append(el) adds el to the end of the list

2. insert(i, el) insert el at index i

3. remove(el) removes the first occurrence of el in list, otherwise errors

4. sort() sorts elements of list in place

List methods are called via dot notation, as in:
>>> colts = ['andrew luck', 'reggie wayne']
>>> colts.append('trent richardson')

None of the mutating list methods return a new list — they simply modify the original
list and return None.

2.1 Code Writing Questions

1. Write a function square elements which takes a lst and replaces each element
with the square of that element. Mutate lst rather than returning a new list.
def square_elements(lst):

"""
>>> lst = [1, 2, 3]
>>> square_elements(lst)
>>> lst
[1, 4, 9]
"""

2. Write a function that removes all instances of an element from a list.
def remove_all(el, lst):

"""
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all(1, x)
>>> x
[3, 2, 5, 7]
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 4
3. Reverse a list in place, i.e. mutate the given list itself, instead of returning a new list.
def reverse(lst):

""" Reverses lst in place.
>>> x = [3, 2, 4, 5, 1]
>>> reverse(x)
>>> x
[1, 5, 4, 2, 3]
"""

4. Write a function that takes in two values x and el, and a list, and adds as many el’s
to the end of the list as there are x’s.
def add_this_many(x, el, lst):

""" Adds el to the end of lst the number of times x occurs
in lst.
>>> lst = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5]
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 5

3 Nonlocal

Until now, you’ve been able to access variables in parent frames, but you have not been
able to modify them. The nonlocal keyword can be used to modify a variable in the
parent frame outside the current frame (as long as it’s not the global frame). For example,
consider stepper, which uses nonlocal to modify num:
def stepper(num):

def step():
nonlocal num # declares num as a nonlocal variable
num = num + 1 # modifies num in the stepper frame
return num

return step

3.1 Environment Diagrams

1. Draw the environment diagram for the following series of calls after stepper has
been defined:
s = stepper(3)
s()
s()

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 6
2. Given the definition of make shopkeeper below, draw the environment diagram.
def make_shopkeeper(total_gold):

def buy(cost):
nonlocal total_gold
if total_gold < cost:

return 'Go farm some more champions'
total_gold = total_gold - cost
return total_gold

return buy

infinity_edge, zeal, gold = 3800, 1100, 3800
shopkeeper = make_shopkeeper(gold - 1000)
shopkeeper(zeal)
shopkeeper(infinity_edge)

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

DISCUSSION 7: NONLOCAL AND MUTABILITY Page 7
3.2 Some Common Misconceptions

1. What is wrong with the following code?
a = 5
def adder(x):

def add(y):
nonlocal x, y
x += y
return x

return add
adder(2)(3)

2. What is wrong with the following code?
a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng

