
ORDERS OF GROWTH 4
COMPUTER SCIENCE 61A

July 2, 2015

1 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following:
if the size of the input grows, how does the runtime of the function change? And what
do we mean by ”runtime”? Let’s look at the following examples first:
def square(n):

return n * n

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

• square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes
one operation.

input function call return value number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
...

...
...

...
100 square(100) 100*100 1

...
...

...
...

n square(n) n*n 1

1



DISCUSSION 4: ORDERS OF GROWTH Page 2
• factorial(1) requires one multiplication, but factorial(100) requires 100 mul-

tiplications. As we increase the input size of n, the runtime (number of operations)
increases linearly proportional to the input.

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
...

...
...

...
100 factorial(100) 100*99*. . . *1*1 100

...
...

...
...

n factorial(n) n*(n-1)*. . . *1*1 n

Big-O notation is a way to denote an upper bound on the complexity of a function. For
example, O(n2) states that a function’s run time will be no larger than the quadratic of
the input.

• If a function requires n3 + 3n2 + 5n + 10 operations with a given input n, then the
runtime of this function is O(n3). As n gets larger, the lower order terms (10, 5n, and
3n2) all become insignificant compared to n3.

• If a function requires 5n operations with a given input n, then the runtime of this
function is O(n). The constant 5 only influences the runtime by a constant amount.
In other words, the function still runs in linear time. Therefore, it doesn’t matter that
we drop the constant.

1.1 Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

• O(1) — constant time takes the same amount of time regardless of input size

• O(log n) — logarithmic time

• O(n) — linear time

• O(n2), O(n3), etc. — polynomial time

• O(2n) — exponential time (considered “intractable”; these are really, really horrible)

When using big-O notation, we always want to find the ”tightest bound”. Recall that
factorial(n) requires nmultiplications. Its technically correct to say that factorial(n)
is in O(n2), since n2 >= n for all values of positive values of n, but its not very informa-
tive. Instead, we want to find the smallest big-O that factorial(n) belongs to. Since
our implementation of factorial(n) must use at least n multiplications in all cases, we
say its tightest bound is O(n).

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 3
1.2 Questions

1. What is the order of growth in time for the following functions? Use big-O notation.
def sum_of_factorial(n):

if n == 0:
return 1

else:
return factorial(n) + sum_of_factorial(n - 1)

2. def fib_recursive(n):
if n == 0 or n == 1:

return n
else:

return fib_recursive(n - 1) + fib_recursive(n - 2)

3. def fib_iter(n):
prev, curr, i = 0, 1, 0
while i < n:

prev, curr = curr, prev + curr
i += 1

return prev

4. def mod_7(n):
if n % 7 == 0:

return 0
else:

return 1 + mod_7(n - 1)

5. def bonk(n):
total = 0
while n >= 2:

total += n
n = n / 2

return total
6. def bar(n):

if n % 2 == 1:

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 4
return n + 1

return n

def foo(n):
if n < 1:

return 2
if n % 2 == 0:

return foo(n - 1) + foo(n - 2)
else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

1.3 Extra Questions

1. Previously, we looked at the is prime function. Here’s the code for it:

def is_prime(n):
if n == 1:

return False
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

What is the order of growth of is prime?

How can we change is prime so that it runs in O(
√
n)?

def is_prime(n):

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 5

2 Review of Tree Recursion

Consider a function that requires more than one recursive call. A simple example is a
function that computes Fibonacci numbers:
def fib(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than one recursive
call in its recursive case. If we draw out the recursive calls, we see the recursive calls in
the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems that are
naturally solved using tree recursive procedures are generally difficult to write iteratively.
As a general rule of thumb, whenever you need to try multiple possibilities at the same
time, you should consider using tree recursion.

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 6
2.1 Questions

1. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each
time. How many different ways can I go up this flight of stairs? Write a function
count stair ways that solves this problem for me. Assume n is positive.

Before we start, what’s the base case for this question? What is the simplest input?

What does count stair ways(n - 1) represent? What does count stair ways(n
- 2) represent?

Use those two recursive calls to write the recursive case:
def count_stair_ways(n):

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 7
2. Here’s a part of the Pascal’s trangle:

Item: 0 1 2 3 4 ...
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
...

Every number in Pascal’s triangle is defined as the sum of the item above it and the
item that is directly to the upper left of it, use 0 if the entry is empty. Define the
procedure pascal(row, column) which takes a row and a column, and finds the
value at that position in the triangle.
def pascal(row, column):

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 8
3. The TAs want to print handouts for their students. However, for some unfathomable

reason, both the printers are broken; the first printer only prints multiples of n1, and
the second printer only prints multiples of n2. Help the TAs figure out whether or
not it is possible to print an exact number of handouts!

First try to solve without a helper function. Also try to solve using a helper function
and adding up to the sum.

def has_sum(sum, n1, n2):
"""
>>> has_sum(1, 3, 5)
False
>>> has_sum(5, 3, 5) # 1(5) + 0(3) = 5
True
>>> has_sum(11, 3, 5) # 2(3) + 1(5) = 11
True
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng



DISCUSSION 4: ORDERS OF GROWTH Page 9
2.2 Extra Questions

1. The next day, the printers break down even more! Each time they are used, Printer
A prints a random x copies 50 ≤ x ≤ 60, and Printer B prints a random y copies
130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as they
get at least lower, but no more than upper, copies printed. (More than upper copies
is unacceptable because it wastes too much paper.)

Hint: Try using a helper function.

def sum_range(lower, upper):
"""
>>> sum_range(45, 60) # Printer A prints within this range
True
>>> sum_range(40, 55) # Printer A can print a number 56-60
False
>>> sum_range(170, 201) # Printer A + Printer B will print
... # somewhere between 180 and 200 copies total
True
"""

CS 61A Summer 2015: Albert Wu and Robert Huang, with
Alfonso Martinez, Cale Horeff, Chris Le, Colin Schoen, Derrick Lin, Jeffrey Lu, Jessica Gu, Rohit Lalachandani,
Tammy Nguyen, Will Jiang, and Yulin Zheng


