A recursive function is a function that calls itself. Below is a recursive factorial function.

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

Although we haven’t finished defining `factorial`, we are still able to call it since the function body is not evaluated until the function is called. We do have one base case: when `n` is 0 or 1. Now we can compute `factorial(2)` in terms of `factorial(1)`, and `factorial(3)` in terms of `factorial(2)`, and `factorial(4)` — well, you get the idea.

There are three common steps in a recursive definition:

1. **Figure out your base case**: What is the simplest argument we could possibly get? For example, `factorial(0)` is 1 by definition.

2. **Make a recursive call with a simpler argument**: Simplify your problem, and assume that a recursive call for this new problem will simply work. This is called the “leap of faith”. For `factorial`, we reduce the problem by calling `factorial(n-1)`.

3. **Use your recursive call to solve the full problem**: Remember that we are assuming your recursive call works. With the result of the recursive call, how can you solve the original problem you were asked? For `factorial`, we just multiply `(n - 1)!` by `n`.
1. Print out a countdown using recursion.
   ```python
def countdown(n):
    """
    >>> countdown(3)
    3
    2
    1
    """
    
First, think about a base case. What is the simplest input the problem could be given? After you've thought of a base case, think about a recursive call with a smaller argument that approaches the base case. What happens if you call \texttt{countdown(n - 1)}? Then, put the base case and the recursive call together, and think about where a print statement would be needed.

2. Is there an easy way to change \texttt{countdown} to count up instead?

3. Write a function \texttt{recursive} \texttt{mul(m, n)} that multiplies two numbers \texttt{m} and \texttt{n}. Assume \texttt{m} and \texttt{n} are positive integers. Use recursion, not \texttt{mul} or \texttt{*}!

   \textbf{Hint:} \texttt{5*3 = 5 + 5*2 = 5 + 5 + 5*1}.

   For the base case, what is the simplest possible input for \texttt{recursive} \texttt{mul}?

   For the recursive case, what does calling \texttt{multiply(m - 1, n)} do? What does calling \texttt{multiply(m, n - 1)} do? Which one do we want to use?
4. Write a procedure `expt(base, power)`, which implements the exponent function. For example, `expt(3, 2)` returns 9, and `expt(2, 3)` returns 8. Assume `power` is always a non-negative integer. Use recursion, not `pow`!

```python
def expt(base, power):
```

5. Write a recursive function that sums the digits of a number `n`. Assume `n` is positive. You might find the operators `//` and `%` useful.

```python
def sum_digits(n):
```

```python
def multiply(m, n):
 """
 >>> multiply(5, 3)
 15
 """
```
6. Below is the iterative version of `is_prime`, which returns `True` if positive integer `n` is a prime number and `False` otherwise:

```python
def is_prime(n):
 if n == 1:
 return False
 k = 2
 while k < n:
 if n % k == 0:
 return False
 k += 1
 return True
```

Implement the recursive `is_prime` function. Do not use a while loop, use recursion.

```python
def is_prime(n):
```

---

7. Write `sum_primes_up_to(n)`, which sums up every prime up to and including `n`. Assume you have an `is_prime(n)` predicate.

```python
def sum_primes_up_to(n):
```
1. Draw an environment diagram for the following code:
```python
def rec(x, y):
 if y > 0:
 return x * rec(x, y - 1)
 return 1
rec(3, 2)
```

Bonus question: what does this function do?
2 Iteration vs. Recursion

We’ve written factorial recursively. Let’s compare the iterative and recursive versions:

```python
def factorial_recursive(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial_recursive(n-1)

def factorial_iterative(n):
 total = 1
 while n > 1:
 total = total * n
 n = n - 1
 return total
```

Notice, while the recursive function “works” until n is less than or equal to 0, the iterative function “works” while n is greater than 0. They’re essentially the same.

Let’s also compare fibonacci.

```python
def fib_recursive(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib_recursive(n - 1) + fib_recursive(n - 2)

def fib_iterative(n):
 current, next = 0, 1
 while n > 0:
 current, next = next, current + next
 n = n - 1
 return current
```

For the recursive version, we copied the definition of the Fibonacci sequence straight into code! The \( n \)th fibonacci number is simply the sum of the two before it. Iteratively, you need to keep track of more numbers and have a better understanding of the code.

Some code is easier to write iteratively and some recursively. Have fun experimenting with both!