CS 61A Final Exam Study Guide — Page 1 A basic interpreter has two parts: a parser and an evaluator.

. . . h der. lc.
Scheme programs consist of expressions, which can be: Ceneme_rearer-py Cearey
e Primitive expressions: 2, 3.3, true, +, quotient
e Combinations: (quotient 10 2). (not true) lines Parser expression Evaluator value
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and @ or more operands.
A combination that is not a call expression is a special form: (+22) Pair(is?, Pair(z, Pair(z, nit))) *
« If expression: (if <predicate> <consequent> <alternative>)
e Binding names: (define <name> <expression>) (% (+ 1 . .
. Pair('x', Pair(Pair('+', ...)))
e New procedures: (define (<name> <formal parameters>) <body>) (- 23)" iy 4
printeda as
> (define pi 3.14) > (define (abs x) (* 4 5.6))° (* (+ 1 (- 23) (* 4 5.6)) 10)
> (x pi 2) (if (< x 0) 10)°
6-28 (_ X) . .
Lines forming A number or a Pair with an
X)) a Scheme ; . A number
. operator as 1its first element
> (abs -3) expression
3
. A Scheme list is written as elements 1n parentheses:
Lambda expressions evaluate to anonymous procedures. e ‘
(lambda (<formal-parameters>) <body>) < h (kelemente>)(<element:> <e1ementn9)§< A Scheme list)

Two equivalent expressions:

(define (plus4 x) (+ x 4)) A

(define plus4 (lambda (x) (+ x 4))) - /
An operator can be a combination too:

((lambda (x y z) (+ x y (square z))) 1 2 3)

Each <element> can be a combination or atom (primitive).
(+ (x 3 (+ (x24) (+35))) (+ (-107) 6))

The task of parsing a language i1nvolves coercing a string
representation of an expression to the expression 1itself.

Parsers must validate that expressions are well-formed.
A Parser takes a sequence of lines and returns an expression.

In the late 1950s, computer scientists used confusing names.
« cons: Two-argument procedure that creates a pair

e car: Procedure that returns the first element of a pair
e cdr: Procedure that returns the second element of a pair . Lexical Syntactic .
e nil: The empty list Lines analysis Tokens analysis Expression
They also used a non-obvious notation for linked lists.
« A (linked) Scheme 1list is a pair in which the second element is
nil or a Scheme list. (+ 10 Pair('+', Pair(l, ...))
« Scheme lists are written as space-separated combinations. V(= 023) printed as
A dotted list has an arbitrary value for the second element of the Tk AETE)) 1 (= 2 4
last pair. Dotted lists may not be well-formed lists. (o 4:2:09) (1 (= 23) x4 5.0))
- 4 . N .)
;deflne x (cons 1 2)) e Iterative process e Tree-recursive process

e Checks for malformed tokens
e Determines types of tokens
L Processes one line at a t1m¢/ . y
Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

e Balances parentheses
e Returns tree structure
e Processes multiple lines

1. 2)

>

>

i (car x) Not a well-formed Llist!
1

>

2

(cdr x)
> (cons 1 (cons 2 (cons 3 (cons 4 nil))))
(12 3 4)
Symbols normally refer to values; how do we refer to symbols?
> (define a 1)

> (define b 2) | No sign of “a” and “b”
?1(;;5t a b) the resulting value

N

Base case: symbols and numbers

in Recursive call: scheme_read sub-expressions and combine them

The structure
of the Scheme
interpreter

Base cases:
e Primitive values (numbers)
e Look up values bound to symbols

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) [

ia(?? E‘f o) Symbols are now values Recursive calls: Creates a new
(a 2;5 a L‘ « Eval(operator, operands) of call expressions e”¥i;g”2eﬂze$fCh
_ _ , _ _ e Apply(procedure, arguments) et ine proceilie
QuotatloT can ?lso bi)applled to combinations to form lists. . Eval(sub-expressions) of special forms is applied
> (car '(a b c \
i (cdr '(a b c)) g . R)
(b c) Requires an Base cases:
Dots can be used in a quoted list to specify the second eqx;rﬁﬂgﬁgt Built-in primitive procedures
element of the final pair. loslars Recursive calls:
> (cdr (cdr '(1 2 . 3))) N) Eval(body) of user-defined procedures
3
However, dots appear in the output only of ill-formed lists. To apply a user—-defined procedure, create a new frame 1in which
> '(1 2 . 3) 1| e—=—>|2 |3 formal parameters are bound to argument values, whose parent
(12 . 3) is the env of the procedure, then evaluate the body of the
> '(12. (3 4)) 1] o2 el /3] ed—s4] el lnit procedure in the environment that starts with this new frame.
(1,2 3 4) . (define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))
> '(12 3. nil) 1| =] 2| e—|3 | e—[nil
(1 2 3) (f (list 1 2))
> (cdr "((1 2) (34 . (5)))) g: Global frame
(3 4 5)

f e > LambdaProcedure instance [parent=qg]

class Pair:

Pair Pair

"""A Pair has first and second attributes. .
[parent=g] S o * 1| T2 2 | eT>nil
For a Pair to be a well-formed 1ist, I
second is either a well-formed list or nil. : [parent=g] S —
woon Scheme expression
def init (self, first, second): (x 3 [parent=g] s o—
self.first = first (+ 4 5)
self.second = second (x 6 7 8))

A procedure call that has not yet returned is active. Some

>>> g = Pair(l, Pair(2, Pair(3, nil))) | procedure calls are tail calls. A Scheme interpreter should
>>> print(s) Expression Tree support an unbounded number of active tail calls.
(1 2 3) % A tail call is a call expression 1n a tail context, which are:

>>> len(s) e The last body expression in a lambda expression

3 3 + * * Expressions 2 & 3 (consequent & alternative) in a tail context
>>> print(Pair(1l, 2)) N SN 1f expression

(1 . 2) 4 5 o 7 8 : . .

>>> print (Pair(1l, Pair(2, 3))) (Q?f}n?nffﬁgFQKEQF_n"K?\ (9?f¥ﬂﬁugy?ﬂﬂth_f) ________________ .

(1 2. 3) (if (= n 0) k (if _(null?..s). .0

Representation as Pairs L EECLEPPEEEEREPP T R o L

first |second first |second first |second first |second E'(faCtOria-L (_ n 1) : . (+ 1 ((-Length (Cdr S)));)i)
b S *—r> 3 —r> *— I nll (* k n) ?)) '\‘.__‘:_._._._._._._._._._._._._._._._._._. _._._._._._._._._._._._._._._._._._.::’,'
first |second first |second first |second first |second ."":""""""""""""-_ -------- NOt d tall Ca-l.l)
| e——| 6 | ——| 7 | ——| 8 |nil (define (length-tail s)
v (define (length-iter s n) (_sscursive call is a tail calli)
first |second first |second first sec_ond (lf‘_(nu -L-L?S)n ______________________________
| > 4| | 5> |nil (length-iter (cdr s) (+ 1 n)) ;))

__

(length-iter s @))

CS 61A Final Exam Study Guide — Page 2

A stream is a Scheme list (linked The rest of a stream 1s a promise.
list), but the rest of the list When you force a promise, you
1s computed on demand. force evaluation of the expression

scm> (define s (cons-stream 1 (cons-stream 2 nil)))

S
SCm> S Promise (not

(1 . #[promise (not forced)]) forced)

icm> (car s) 1 o——>

scm> (cdr s)

#[promise (not forced)] Promise Promise (not
scm> (stream-cdr s) (forced) forced)
(2 . #[promise (not forced)])

scm> S 1 o—> 2 *r—>

(1 . #[promise (forced)])

You can explicitly create Promise Promise
promises by using the delay (forced) (forced)
special form. To force a . g1 5 i ////
scm> (define x (/ 1 0)) ’

ZeroDivisionError
scm> (define y (delay (/ 1 0)))
y
scm> y |
#[promise (not forced)] (define (map-stream fn s)
scm> (force y) (if (null? s)
ZeroDivisionError nil
(cons=stream (fn (car s))

(map-list fn (stream-cdr s)))))

p
Infinite stream of integers
starting at first

(define (integers first)
(cons—-stream first
(integers (+ first 1))))

The way in which names are looked up in Scheme and Python 1is
called lexical scope (or static scope).

Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)

Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))

> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)

13

A simple fact in Logic declares a relation to be true.

(fact (father vader luke))
(fact (father vader leia))

You can make queries in Logic:

Successfquery (parent vader luke)) Variab1e§ start with a
(query (parent luke vader)) question mark (7?))
Failed.
(query (parent ?who luke))
Success'! 4 | | | N
who: vader Logic will figure out all
(query (parent vader ?who)) symbols that can fit the
who: luke <<:; variable
who: leia g

A compound fact consists of a conclusion and one or more
hypotheses.

?x 1s a grandparent of ?y if

e ?x is the parent of some ?z, AND
e?z 1s the parent of ?y

(fact (grandparent ?x ?y)
(parent ?x ?7z)
(parent ?z ?y))

A recursive fact is a compound fact where one or more of the
hypotheses are recursive.

Base case

(fact (ancestor 7?x ?y)
(parent ?x ?z))

(fact (ancestor ?x ?y) <1

?x 1s an ancestor of ?y if
e ?x 1s the parent of some ?z
e?z 1s an ancestor of ?y

Recursive

arent ?x ?z
(p) case

(ancestor ?z ?y))

Dot notation splits a list
into first and rest

\'4

(fact (in ?elem (?elem . ?rest))) An element 1s 1in a list 1if

(fact (in ?elem (?first . ?rest)) e the element 1s the first element
(in ?elem ?rest)) of the list, OR
e the element 1s 1n the rest of the
(in 4 (4 32 1)) list
Success'! .
(in 4 (1 2 3 4)) (in 4 (1 2 3 4))
Success! Success!
(in ?x (1 2 3 4)) o
Success'! Bindings:
x: 1 elem: 4
X: 2 first: 1
x: 3 rest: (2 3 4)
X: 4

(A table has columns

and rows][A column

has a name and a type j

v_ Y
Latitude Longitude Name
_________________ 38 22 ... Berkeley
42 71 Cambridge
""""" A 45 | 93 | Minneapolis |

[A row has a value for each column j

select :[expression] as [namel],

select [columns] from [table] where [condition] order by [order];

create table parents as

select
select
select
select
select
select
select

"abraham" as parent, "barack" as child union
"abraham" , 'clinton"

"delano" , 'herbert"

"fillmore" , abraham"

"fillmore" , 'delano"

"fillmore" , ‘'grover"

"eisenhower" , "fillmore";

create table dogs as

select
select
select
select
select
select
select
select

select a.

"abraham" as name, "long" as fur
"barack" , 'short"
"clinton" , long"
""delano" , long"
"eisenhower" , 'short"
"fillmore" , curly"
"grover" , 'short"
"herbert" , curly";

child as first, b.child as second

from parents as a, parents as b
where a.parent = b.parent and a.child <

select weight/legs, count ()
from animals
group by weight/legs having count(x)>1;

kind legs weight

dog 4 20 weight/legs =

cat 4 10 weight/legs =
ferret 4 10 weight/legs =
parrot 2 6 weight/legs =
penguin 2 10 weight/legs =
t-rex 2 12000 |weight/legs =

- 1 4

union
union
union
union
union

union
union
union
union
union
union
union

b.child;

/

O W N N U

6000

[expression] as [name], ... :;

First Second
barack clinton
abraham delano
abraham grover
delano grover
weight/legs count(*)
5 2
2 2

