
CS 61A Structure and Interpretation of Computer Programs
Summer 2015 Final Solutions

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A midterm 1, midterm 2, and final exam study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

2

1. (12 points) What Would Scheme Do?

Assume that you have started the interactive Scheme interpreter from Project 4 using python3 scheme.py and
executed the following statements:

(define lst '(1 2 (+ 3 4)))

(define y 1)

(define f (mu (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(define (h z) (z 3 7))

For each of the expressions in the table below, write the output displayed by the interpreter when the expression
is evaluated. If an error occurs, write “Error”. Assume each is executed in the same interactive session started
above; the result of executing one line may affect the result of other lines.

Expression Interactive Output

(+ 1 2 3) 6

(/ 1 0) Error

lst
(1 2 (+ 3 4))

(car (cdr lst))
2

(cons (cons 3 (cons 4 nil)) 5)
((3 4) . 5)

(or 1 (/ 1 0))
1

(and 1 (/ 1 0))
Error

(h +)
10

(define x 5)
x

(f (+ x x))
11

(h g)
13

(let ((a 1) (2 2)) a)
Error

(let ((x 1) (y x)) y)
5

(f y)
2

Name: 3

2. (16 points) Broken promises

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You only need to show the final state of each frame. You

may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

1 def promises(x):

2 delayed = [0]

3 while x > 0:

4 delayed.append(

5 lambda y: y - x)

6 x = x - 1

7 return delayed

8

9 def force(promises):

10 res = [0]

11 x = 1

12 while x < len(promises):

13 res.append(

14 promises[x](7))

15 x = x + 1

16

17 force(promises(2))

Global Frame

Return Value

f1: [parent=]

Return Value

f2: [parent=]

Return Value

f3: [parent=]

Return Value

f4: [parent=]

promises

force

func promises(x) [parent=Global]

func force(promises) [parent=Global]

promises Global

force Global

λ (line 5) f1

λ (line 5) f1

x 0

delayed 0
0

list

1 2

func λ(y) (line 5) [parent=f1]

func λ(y) (line 5) [parent=f1]

promises

res

x 3

None

0
0

list

7
1

7
2

y 7

7

y 7

7

4

(b) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You only need to show the final state of each frame. You

may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

1 def no(pls):

2 def y(y):

3 fun.append(y)

4 pls[0] = pls

5 def y(y):

6 nonlocal pls

7 pls = pls + [y]

8 return y

9 return y

10

11 fun = [1, [2]]

12 no(fun)(3)(0)

Global Frame

Return Value

f1: [parent=]

Return Value

f2: [parent=]

Return Value

f3: [parent=]

no

fun

func no(pls) [parent=Global]

no Global

pls

y

y f1

y

y f2

y 0

0

list

1

3
2

2
0

list

0

list

1

3
2

0
3

func y(y) [parent=f1]

func y(y) [parent=f2]

None

Name: 5

3. (4 points) Cracking the Coding Interview

The fizzbuzz question is a standard software engineering interview question that goes as follows:

Implement fizzbuzz(n), which prints numbers from 1 to n (inclusive). However, for numbers divisible by 3,
print “fizz”. For numbers divisible by 5, print “buzz”. For numbers divisible by both 3 and 5, print “fizzbuzz’.

A recent Reddit thread expressed concern that UC Berkeley computer science students did not know how to
solve fizzbuzz. Prove them wrong.

def fizzbuzz(n):

"""

>>> result = fizzbuzz(16)

1

2

fizz

4

buzz

fizz

7

8

fizz

buzz

11

fizz

13

14

fizzbuzz

16

>>> result is None

True

"""

for i in range(1, n + 1):

if i % 3 == 0 and i % 5 == 0:

print('fizzbuzz')

elif i % 3 == 0:

print('fizz')

elif i % 5 == 0:

print('fizz')

else:

print(i)

https://www.reddit.com/r/cscareerquestions/comments/3e55c8/interviewers_can_people_really_not_pass_fizz_buzz/ctbsiou?context=3

6

4. (8 points) I’m getting TREEtment for my heap problem

(a) (4 pt) In computer science, a min heap is a tree such that every node’s entry is less than or equal to all of
the entries in that node’s subtrees.

2

5

5 7

9

9 3

6

This is a valid min heap

2

4

3

5

7

1

3

9

Not a valid min heap. 4 is greater than 3. Also, 2 is
greater than 1.

Implement is_min_heap(t), where t is an instance of the Tree class (provided below). is_min_heap returns
True if t is a valid min heap and returns False if it is not a valid min heap.

The Tree class has been provided for you below. A reasonable solution is around 6 lines, but you can use
fewer or more if you want.

class Tree:

def __init__(self, entry, subtrees=[]):

self.entry = entry

self.subtrees = list(subtrees)

def is_leaf(self):

return not self.subtrees

def is_min_heap(t):

if t.is_leaf():

return True

for subtree in t.subtrees:

if t.entry > subtree.entry or not is_min_heap(subtree):

return False

return True

Name: 7

(b) (4 pt)

A full binary tree is a BinaryTree where every node is either a leaf or has two children. Consider the
following BinaryTrees:

A

B

C

D

E

F

G

Not a full binary tree; nodes C and F only have one
child.

A

B C

D E

F G

A full binary tree; every node is either a leaf or has
two children.

Implement is_full(b), where b is an instance of the BinaryTree class. is_full returns True if b is a full
binary tree and returns False otherwise. You may assume b will not be the empty binary tree.

The BinaryTree class has been provided for you. A reasonable solution is around 5 to 7 lines, but you can
use fewer or more if you want.

class BinaryTree:

empty = ()

def __init__(self, entry, left=empty, right=empty):

self.entry = entry

self.left = left

self.right = right

def is_full(b):

if b.left is BinaryTree.empty and b.right is BinaryTree.empty:

return True

elif b.left is BinaryTree.empty or b.right is BinaryTree.empty:

return False

else:

return is_full(b.left) and is_full(b.right)

8

5. (9 points) CS61A+

(a) (4 pt) The TAs are building a social networking website called CS61A+. The TAs plan to represent the
network in a class called Network that supports the following method:

• add_friend(user1, user2): adds user1 and user2 to each other’s friends lists. If user1 or user2 are
not in the Network, add them to the dictionary of friends.

Help the TAs implement these two methods to make their social networking website popular!

class Network:

"""

>>> cs61a_plus = Network()

>>> cs61a_plus.add_friend('Robert', 'Jeffrey')

>>> cs61a_plus.friends['Robert']

['Jeffrey']

>>> cs61a_plus.friends['Jeffrey']

['Robert']

>>> cs61a_plus.add_friend('Jessica', 'Robert')

>>> cs61a_plus.friends['Robert']

['Jeffrey', 'Jessica']

"""

def __init__(self):

self.friends = {} # Maps users to a list of their friends

def add_friend(self, user1, user2):

if user1 not in self.friends:

self.friends[user1] = []

if user2 not in self.friends:

self.friends[user2] = []

self.friends[user1].append(user2)

self.friends[user2].append(user1)

Name: 9

(b) (5 pt) CS61A+ turns out to be unpopular. To attract more users, the TAs want to implement a feature
that checks if two users have at most n degrees of separation. Consider the following CS61A+ Network:

self.friends = {

'Robert': ['Jeffrey', 'Jessica'],

'Jeffrey': ['Robert', 'Jessica', 'Yulin'],

'Jessica': ['Robert', 'Jeffrey', 'Yulin'],

'Yulin': ['Jeffrey', 'Jessica'],

'Albert': []

}

• There is 1

degree of separation between Robert and Jeffrey, because they are direct friends.

• There are 2 degrees of separation between Robert and Yulin (Robert → Jessica → Yulin)

• The degree of separation between Albert and anyone else is undefined, since Albert has no friends.

Help the TAs implement the degrees(user1, user2, n) method, which returns True if user1 and user2

are separated by at most n degrees (fewer degrees is okay). You can assume that user1 and user2 are
already in the Network.

class Network:

Code from previous question

def degrees(self, user1, user2, n):

"""

>>> cs61a_plus = Network()

>>> cs61a_plus.friends = {

... 'Robert': ['Jeffrey', 'Jessica'],

... 'Jeffrey': ['Robert', 'Jessica', 'Yulin'],

... 'Jessica': ['Robert', 'Jeffrey', 'Yulin'],

... 'Yulin': ['Jeffrey', 'Jessica'],

... 'Albert': []

... }

>>> cs61a_plus.degrees('Robert', 'Yulin', 2) # Exactly 2 degrees

True

>>> cs61a_plus.degrees('Robert', 'Jessica', 2) # Less than 2 degrees

True

>>> cs61a_plus.degrees('Yulin', 'Robert', 1) # More than 1 degree

False

>>> cs61a_plus.degrees('Albert', 'Jessica', 10) # No friends!

False

"""

if user1 == user2:

return True

elif n <= 0:

return False

for friend in self.friends[user1]:

if self.degrees(friend, user2, n - 1):

return True

10

return False

Name: 11

6. (14 points) Unique-Lo

(a) (5 pt) Implement an iterator class called Unique. The __init__ method for Unique takes an iterable. The
Unique iterator represents a sequence that contains each element in the iterable only once. Only the first
occurrence of each element should be included in Unique.

See the doctests for expected behavior. A reasonable solution is around 4 to 5 lines, but you can use fewer
or more if you want.

class Unique:

"""

>>> list(Unique(range(5))) # All elements are unique

[0, 1, 2, 3, 4]

>>> x = [1, 2, 1, 5, 2, 5]

>>> list(Unique(x))

[1, 2, 5]

>>> s = Unique([3, 3, 3, 3, 3, 3, 3, 3, 4])

>>> next(s)

3

>>> next(s)

4

"""

def __init__(self, iterable):

self.iterator = iter(iterable)

self.seen = []

def __iter__(self):

return self

def __next__(self):

value = next(self.iterator)

while value in self.seen:

value = next(self.iterator)

self.seen.append(value)

return value

Alternate solution

for elem in self.iterator:

if elem not in self.seen:

12

self.seen.append(elem)

return elem

Name: 13

(b) (4 pt) Implement a Scheme function called contains, which takes in a number and a well-formed Scheme
list of numbers. contains returns True if the number appears in the list.

scm> (contains 3 (1 2 3 4))

True

scm> (contains 42 (3 4 1))

False

A reasonable solution uses 3 to 4 additional lines of code, but you can use fewer or more if you want.

(define (contains num lst)

(cond ((null? lst) False)

((= num (car lst)) True)

(else (contains num (cdr lst)))))

(c) (5 pt) Implement a Scheme function called unique-stream, which takes in a stream and returns a new
stream that contains each element of the input stream only once. Only the first occurence of each element
should be included, and should be included in the order in which it appears in the original stream.

Hint : you may assume contains function from the previous question is implemented correctly and use it in
this question. You do not have to write a tail recursive function for this question.

scm> (define s (cons-stream 1 (cons-stream 2 (cons-stream 1

(cons-stream 5 (cons-stream 2 nil))))))

scm> (define result (unique-stream s))

scm> (stream-to-list result 3)

(1 2 5)

A reasonable solution uses 3 to 5 additional lines of code, but you can use fewer or more if you want.

(define (unique-stream s)

(define (helper s seen)

(cond ((null? s) nil)

((contains (car s) seen)

(helper (stream-cdr s) seen))

(else (cons-stream (car s)

(helper (stream-cdr s) (cons (car s) seen)))))

)

(helper s nil)

)

14

7. (6 points) Counting stars

(a) (4 pt) Implement a tail-recursive Scheme function called count, which takes in an item and a well-formed
Scheme list. count returns the number of times the item appears in the list.

scm> (count 3 (1 2 3 4 3))

2

scm> (count 42 (3 4 2))

0

Remember, your solution must be tail recursive. A reasonable solution uses 3 to 4 additional lines of
code, but you can use fewer or more if you want. Make sure to fill in the blanks in the second-to-last line.

(define (count elem lst)

(define (helper lst total)

(cond ((null? lst) total)

((= (car lst) elem) (helper (cdr lst) (+ total 1)))

(else (helper (cdr lst))))

)

(helper lst 0)

)

(b) (2 pt) When the Berts eat at a restaurant, they record a review in a SQL table called reviews:

restaurant user stars review
Barney’s Albert 4 Used to like it
Chipotle Robert 5 BOGO! BOGO!
Eureka Albert 5 My favorite!
Bongo Burger Albert 2 When I’m desperate
Umami Burger Albert 5 I love truffle fries!

Write an SQL query to figure out how many restaurants Albert gave 4 or 5 stars. Using the table above, the
output to your query should be the following:

stars number of reviews
4 1
5 2

select stars, count(*) from reviews

where user = "Albert"

group by stars

having stars >= 4;

Name: 15

8. (9 points) Subsequently...

(a) (5 pt) Implement a Python function called subsequences(lst), which takes in a Python list of unique
numbers. subsequences returns a list of all subsequences of lst.

A list A is a subsequence of list B if A contains zero or more elements of B in the same order that they appear
in B.

See the doctests for expected behavior. We will not penalize you for returning the subsequences in a different
order than the doctests. However, the order of elements within a subsequence must be correct.

def subsequences(lst):

"""

>>> result = subsequences([1, 2, 3])

>>> for subsequence in result:

... print(subsequence)

[]

[3]

[2]

[2, 3]

[1]

[1, 3]

[1, 2]

[1, 2, 3]

"""

if lst == []:

return [[]]

without_first = subsequences(lst[1:])

with_first = [[lst[0]] + elem for elem in without_first]

return without_first + with_first

16

(b) (4 pt) In the previous question, we had to explicitly tell Python how to construct the list of subsequences,
because Python is an imperative programming language.

Recall that, since Logic is a declarative programming language, we just have to describe what a subsequence
looks like, and then Logic will figure out all of the subsequences for us with the following query:

logic> (query (subsequence (1 2 3) ?what))

what: (1 2 3)

what: (1 2)

what: (1 3)

what: (1)

what: (2 3)

what: (2)

what: (3)

what: ()

In this question, we will write a set of facts for the subsequence relation, which describes what a subsequence
of a list looks looks like.

(1 pt) Write a fact for the base case:

(fact (subsequence () ()))

(2 pt) Next, write a recursive fact for the case where the first element of the list is the same as the first
element in the subsequence. For example,

logic> (query (subsequence (1 2 3 4) (1 2 4)))

Success!

(fact (subsequence (?a . ?r1) (?a . ?r2))

(subsequence ?r1 ?r2))

(1 pt) Finally, write a recursive fact for the case where the first element of the list might not be the same
as the first element in the subsequence. For example,

logic> (query (subsequence (1 2 3 4) (2 3)))

Success!

(fact (subsequence (?a . ?r) ?sub)

(subsequence ?r ?sub))

Name: 17

9. (0 points) Extra lectures, extra credit

The following questions are each worth 0.5 extra credit points. Each question is from one of the special interest
lectures given in the last week of class.

(a) (0.5 pt) Machine Learning: What is the difference between a reward function and a value function?

A reward function calculates the immediate score you get from entering a state. A value function calculates
the long-term score you get from starting at a state.

(b) (0.5 pt) Computability and Complexity: What is the difference between P and NP?

P is the set of decision problems that can be solved in polynomial time. NP is the set of decision problems
that can be verified in polynomial time.

(c) (0.5 pt) Computational Biology: What is the edit distance between “sitting” and “biting”, assuming mis-
matches have a cost of 1?

2

10. (0 points) Third time’s the charm?

In each of the three boxes below, write a positive integer. If one of the numbers you pick is the lowest unique
integer in the class, you get one extra credit point. In other words, you get three chances to write the smallest
positive integer that you think no one else will write.

11. (0 points) Drawing to a close

Thanks for a great semester! We enjoyed teaching you this summer and we hope you enjoyed the class as well.
Whether or not you plan on pursuing computer science in the future, we hope you learned a lot.

Feel free to leave a quick poem, haiku, joke, or drawing in the blank space below!

